• Title/Summary/Keyword: demonstrative geometry

Search Result 8, Processing Time 0.017 seconds

A study of the types of students' justification and the use of dynamic software (학생들의 정당화 유형과 탐구형 소프트웨어의 활용에 관한 연구)

  • 류희찬;조완영
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.245-261
    • /
    • 1999
  • Proof is an essential characteristic of mathematics and as such should be a key component in mathematics education. But, teaching proof in school mathematics have been unsuccessful for many students. The traditional approach to proofs stresses formal logic and rigorous proof. Thus, most students have difficulties of the concept of proof and students' experiences with proof do not seem meaningful to them. However, different views of proof were asserted in the reassessment of the foundations of mathematics and the nature of mathematical truth. These different views of justification need to be reflected in demonstrative geometry classes. The purpose of this study is to characterize the types of students' justification in demonstrative geometry classes taught using dynamic software. The types of justification can be organized into three categories : empirical justification, deductive justification, and authoritarian justification. Empirical justification are based on evidence from examples, whereas deductive justification are based logical reasoning. If we assume that a strong understanding of demonstrative geometry is shown when empirical justification and deductive justification coexist and benefit from each other, then students' justification should not only some empirical basis but also use chains of deductive reasoning. Thus, interaction between empirical and deductive justification is important. Dynamic geometry software can be used to design the approach to justification that can be successful in moving students toward meaningful justification of ideas. Interactive geometry software can connect visual and empirical justification to higher levels of geometric justification with logical arguments in formal proof.

  • PDF

A Study on Teaching of the Elements of Geometry in Secondary School (중학교 기하 교재의 '원론' 교육적 고찰)

  • Woo Jeong-Ho;Kwon Seok-Il
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.1
    • /
    • pp.1-23
    • /
    • 2006
  • It is regarded as critical to analyse and re-appreciate Euclidean geometry for the sake of improving school geometry This study, a critical analysis of demonstrative plane geometry in current secondary school mathematics with an eye to the viewpoints of 'Elements of Geometry', is conducted with this purpose in mind. Firstly, the 'Elements' is analysed in terms of its educational purpose, concrete contents and approaching method, with a review of the history of its teaching. Secondly, the 'Elemens de Geometrie' by Clairaut and the 'histo-genetic approach' in teaching geometry, mainly the one proposed by Branford, are analysed. Thirdly, the basic assumption, contents and structure of the current textbooks taught in secondary schools are analysed according to the hypothetical construction, ordering and grouping of theorems, presentations of proofs, statements of definitions and exercises. The change of the development of contents over time is also reviewed, with a focus on the proportional relations of geometric figures. Lastly, tile complementary way of integrating the two 'Elements' is explored.

  • PDF

A Study on the Effects of Using GSP of Level Differentiated Students in Connecting Demonstrative Geometry and Analytic Geometry (GSP를 활용한 기하수업에서 수준별 학생의 논증기하와 해석기하의 연결에 관한 연구)

  • Do, Jeong Cheol;Son, Hong Chan
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.4
    • /
    • pp.411-429
    • /
    • 2015
  • In this study we investigated the effects of using GSP in solving geometric problems. Especially we focused the effects of GSP in leveled students' connection of geometry and algebra. High leveled students prefer to use algebraic formula to solve geometric problems. But when they did not know the geometric meaning of their algebraic formula, they could recognize the meaning after using GSP. Middle and low leveled students usually used GSP to obtain hints to solve the problems. For the low leveled students GSP was usually used to understand the meaning of the problem, but it did not make them solve the problem.

A Study on the Definitions Presented in School Mathematics (학교수학 교과서에서 사용하는 정의에 관한 연구)

  • 우정호;조영미
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.2
    • /
    • pp.363-384
    • /
    • 2001
  • The purpose of this thesis is, through analysing the characteristics of the definitions in Korean school mathematics textbooks, to explore the levels of them and to make suggestions for definition - teaching as a mathematising activity, Definitions used in academic mathematics are rigorous. But they should be transformed into various types, which are presented in school mathematics textbooks, with didactical purposes. In this thesis we investigated such types of transformation. With the result of this investigation we tried to identify the levels of the definitions in school mathematics textbooks. And in school mathematics textbooks there are definitions which carry out special functions in mathematical contexts or situations. We can say that we understand those definitions, only if we also understand the functions of definitions in those contexts or situations. In this thesis we investigated the cases in school mathematics textbooks, when such functions of definition are accompanied. With the result of this investigation we tried to make suggestions for definition-teaching as an intellectual activity. To begin with we considered definition from two aspects, methods of definition and functions of definition. We tried to construct, with consideration about methods of definition, frame for analysing the types of the definitions in school mathematics and search for a method for definition-teaching through mathematization. Methods of definition are classified as connotative method, denotative method, and synonymous method. Especially we identified that connotative method contains logical definition, genetic definition, relational definition, operational definition, and axiomatic definition. Functions of definition are classified as, description-function, stipulation-function, discrimination-function, analysis-function, demonstration-function, improvement-function. With these analyses we made a frame for investigating the characteristics of the definitions in school mathematics textbooks. With this frame we identified concrete types of transformations of methods of definition. We tried to analyse this result with van Hieles' theory about levels of geometry learning and the mathematical language levels described by Freudenthal, and identify the levels of definitions in school mathematics. We showed the levels of definitions in the geometry area of the Korean school mathematics. And as a result of analysing functions of definition we found that functions of definition appear more often in geometry than in algebra or analysis and that improvement-function, demonstration-function appear regularly after demonstrative geometry while other functions appear before demonstrative geometry. Also, we found that generally speaking, the functions of definition are not explained adequately in school mathematics textbooks. So it is required that the textbook authors should be careful not to miss an opportunity for the functional understanding. And the mathematics teachers should be aware of the functions of definitions. As mentioned above, in this thesis we analysed definitions in school mathematics, identified various types of didactical transformations of definitions, and presented a basis for future researches on definition teaching in school mathematics.

  • PDF

The Analysis Textbooks and Instruction Activities of Construction Contents in 7th Mathematics Curriculum (7차 수학과 교육과정 작도 영역의 교과서와 수업사례 분석)

  • 조완영;정보나
    • School Mathematics
    • /
    • v.4 no.4
    • /
    • pp.601-615
    • /
    • 2002
  • This paper analyzed <7-나> and <8-나> textbooks and teacher instruction activities in classrooms, focusing on procedures used to solve construction problems. The analysis of the teachers' instruction and organization of the construction unit in <7-나> textbooks showed that the majority of the textbooks focused on the second step, i.e., the constructive step. Of the four steps for solving construction problems, teachers placed the most emphasis on the constructive order. The result of the analysis of <8-나> textbooks showed that a large number of textbooks explained the meaning of theorems that were to be proved, and that teachers demonstrated new terms by using a paper-folding activities, but there were no textbooks that tried to prove theorems through the process of construction. Here are two alternative suggestions for teaching strategies related to the construction step, a crucial means of connecting intuitive geometry with formal geometry. First, it is necessary to teach the four steps for solving construction problems in a practical manner and to divide instruction time evenly among the <7-나> textbooks' construction units. The four steps are analysis, construction, verification, and reflection. Second, it is necessary to understand the nature of geometrical figures involved before proving the problems and introducing the construction part as a tool for conjecture upon theorems used in <8-나> textbooks' demonstrative geometry units.

  • PDF

A Study on the Historic-Genetic Principle of Mathematics Education(1) - A Historic-Genetic Approach to Teaching the Meaning of Proof (역사발생적 수학교육 원리에 대한 연구(1) - 증명의 의미 지도의 역사발생적 전개)

  • 우정호;박미애;권석일
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.401-420
    • /
    • 2003
  • We have many problems in the teaching and learning of proof, especially in the demonstrative geometry of middle school mathematics introducing the proof for the first time. Above all, it is the serious problem that many students do not understand the meaning of proof. In this paper we intend to show that teaching the meaning of proof in terms of historic-genetic approach will be a method to improve the way of teaching proof. We investigate the development of proof which goes through three stages such as experimental, intuitional, and scientific stage as well as the development of geometry up to the completion of Euclid's Elements as Bran-ford set out, and analyze the teaching process for the purpose of looking for the way of improving the way of teaching proof through the historic-genetic approach. We conducted lessons about the angle-sum property of triangle in accordance with these three stages to the students of seventh grade. We show that the students will understand the meaning of proof meaningfully and properly through the historic-genetic approach.

  • PDF

Student's difficulties in the teaching and learning of proof (학생들이 증명학습에서 겪는 어려움)

  • Kim, Chang-Il;Lee, Choon-Boon
    • Journal for History of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.143-156
    • /
    • 2008
  • In this study, we divided the teaching and learning of proof into three steps in the demonstrative geometry of the middle school mathematics. And then we surveyed the student's difficulties in the teaching and learning of proof by using of questionnaire. Results of this survey suggest that students cannot only understand the meaning of proof in the teaching and learning of proof but also they cannot deduce simple mathematical reasoning as judgement for the truth of propositions. Moreover, they cannot follow the hypothesis to a conclusion of the proposition It results from the fact that students cannot understand clearly the meaning and the role of hypotheses and conclusions of propositions. So we need to focus more on teaching students about the meaning and role of hypotheses and conclusions of propositions.

  • PDF

Development and Applications of Mathematical Proof Learning-Teaching Methods: the Generative-Convergent Model (증명학습에서 생성-수렴 수업 모형의 개발과 적용)

  • 이종희;김부미
    • School Mathematics
    • /
    • v.6 no.1
    • /
    • pp.59-90
    • /
    • 2004
  • This study has been established with two purposes. The first one is to development the learning-teaching model for enhancing students' creative proof capacities in the domain of demonstrative geometry as subject content. The second one is to aim at experimentally testing its effectiveness. First, we develop the learning-teaching model for enhancing students' proof capacities. This model is named the generative-convergent model based instruction. It consists of the following components: warming-up activities, generative activities, convergent activities, reflective discussion, other high quality resources etc. Second, to investigate the effects of the generative-convergent model based instruction, 160 8th-grade students are selected and are assigned to experimental and control groups. We focused that the generative-convergent model based instruction would be more effective than the traditional teaching method for improving middle school students' proof-writing capacities and error remediation. In conclusion, the generative-convergent model based instruction would be useful for improving middle grade students' proof-writing capacities. We suggest the following: first, it is required to refine the generative-convergent model for enhancing proof-problem solving capacities; second, it is also required to develop teaching materials in the generative-convergent model based instruction.

  • PDF