• Title/Summary/Keyword: demolished-concrete recycled aggregate

Search Result 35, Processing Time 0.022 seconds

Strength and Fatigue Properties of Recycled Concretes Under 50% Recycled Aggregate Ratio (재생골재 50% 이하 첨가된 재생콘크리트의 강도 및 피로저항 특성)

  • Doh, Young-Soo;Kim, Sung-Tae;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.13-22
    • /
    • 2005
  • Using recycled aggregate from demolished concrete structures provides a peat opportunity fur conserving natural resources. In many parts of world, virgin aggregate deposits have been depleted, and transporting aggregates over long distances can be much more expensive than using a low-cost recycled aggregate. In Korea, about 7-million tons of concrete occurs annually, out of this, about 2-3 million tons are available for recycling. This study is to present the method of utilizing the recycled aggregate. The recycled aggregate concretes were made for compressive strength test, flexural strength test and fatigue test using w/c of 40, 50 and 60%. The replacing rates of recycled aggregate to virgin aggregate were 0, 25 and 50%. The purpose of this study is to compare the fatigue lift of recycled aggregate concrete with that of virgin aggregate concrete. It was shown that the fatigue life of recycled concrete was function of recycled aggregate replacement ratio and water cement ratio.

  • PDF

Physical Properties of Planting Concrete Using Recycled Aggregate (재생골재를 이용한 식재용 콘크리트의 물리적 특성)

  • 이상태;신동안;황정하;김진선;오선교;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.93-96
    • /
    • 2000
  • In this paper, physical properties of planting concrete using Recycled aggregates made with demolished concrete and construction wastes are investigated. According to the test results. It shows that recycled aggregates made with demolished concrete and construction wastes have low physical properties compared with crushed stone. But, recycled aggregates made with construction wastes shows better performance in absorption ratio, unit weight and thermal conductivity than crushed stone. According it is thought that they are available for being applied to planting concrete considering the sides of efficient recycling of construction wastes and saving the manufacturing cost.

  • PDF

Resistance to Freezing and Thawing on Concrete with Recycled Aggregate (재생골재를 사용한 콘크리트의 내동해성)

  • 문대중;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.85-88
    • /
    • 2001
  • Utilization of demolished-concrete as recycled aggregate has been researched for the purpose of substituing for insufficient natural aggregate, saving resources and protecting environment. There, however, are some problems that qualities of recycled aggregates are not only largely diverse, but also mechanical properties of recycled aggregate concrete decrease a little in comparison with those of natural aggregate concrete. In this study, the resistance to freezing and thawing of recycled aggregate concrete was highly different due to adhered mortar on recycled aggregate, and durability factor of concrete with NA SRA and DRA was decreased more than that of control concrete. However, durability factor of concrete with AA SRA was larger than that of control concrete.

  • PDF

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.87-91
    • /
    • 2009
  • Recycling demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help solve the growing waste disposal crisis and the problem of depleted natural aggregates. The purpose of this study is to investigate chloride migration of recycled aggregate concrete containing pozzolanic materials by chloride migration coefficient. The specimens were made with recycled coarse aggregate as various replacement ratio(10, 30, 50%) and metakaolin, blast furnace slag, fly ash is replaced for recycled concrete with mixing ratio 20%. The major results are as follows. 1) Compressive strength of recycled aggregate concrete containing pozzolanic materials increase as curing age and chloride migration decrease. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag, metakaolin shows the similar or lower value than plain concrete at all ages.

  • PDF

Waste Concrete & Recycled Aggregate (긴급제언 - 폐콘크리트와 순환골재)

  • Song, In-Chul;Park, Tae-Hee
    • Journal of the Korean Professional Engineers Association
    • /
    • v.45 no.1
    • /
    • pp.42-44
    • /
    • 2012
  • Recently human beings are experiencing fatal matters of environmental harm from enormous demolished concrete, even though waste concrete can get much more market value if recycled. The problem is that demolished concrete can not find the place where it can be used more economically and efficiently, but eventually can be spent worthlessly for landfill or road basement. Up to now, we can barely find the right place matching for structural performance in construction site with recycled concrete, even more, can not find another place to recycle this tremendous waste concrete. in addition it needs recycling information system between demanders and suppliers managed by government and other.

  • PDF

Concrete Recycling considering Risk Evaluation of Impurities in Recycled Aggregate (순환골재 불순물의 위험성을 고려한 콘크리트 리사이클링)

  • Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.95-97
    • /
    • 2012
  • Recycled aggregate (RA) produced from demolished concrete waste can bring about several problems on concrete performance, when it is used as aggregate for new concrete. Because RA generally has lower quality than natural aggregate due to the residual cement paste attached on RA and various impurities. It is also very difficult to ensure that the quality of RA remains consistent, because generally RA is produced variously. Thus, in concrete recycling, it is extremely important to estimate the risk of the impurities which could affect performances of recycled aggregate concrete (RAC) focusing on the material flow of concrete waste and its recycling. This study suggests an evaluation result to expect the possibility of impurity mixing in RA production procedure. and suggests a risk evaluation model to expect the changes of RAC performances based on conventional data in Japan.

  • PDF

Strength Properties of Concrete using Non-Washed Recycled Coarse Aggregate (비세척된 재생 조골재 콘크리트의 강도특성)

  • 윤현도;김문섭;임경택;정수영;윤석천
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-494
    • /
    • 1998
  • This paper describes the possibility to reuse concrete waste produced by demolition of reinforced concrete structures as aggregate for concrete from the viewpoint of strength. Concrete rubble obtained from the demolished buildings at Taejon were crushing machine to reuse as coarse aggregate. The strength properties, such as compressive strength, splitting tensile strength, bending strength and shear strength, of recycled and normal concrete were examined and compared experimentally when water cement ratio was varied. From the results of this study, it was thought that in case of non-washed aggregate concrete, strength properties of recycled coarse aggregate is similar to that of normal concrete, In W/C 55%~45%, stress-strain curve of recycled concrete shows more stable than that of normal concrete, while in W/C 35%, it shows brittle behavior.

  • PDF

Recyled Concrete Aggregate (RCA) in Structural Concrete of Developing Nation: A Cace Study of Ethiopian Construction Industry

  • Damtie, Mitiku;Woldesenbet, Asregedew
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.405-410
    • /
    • 2015
  • Today, the booming construction in Ethiopia is leading to an increased demolition of concrete structures whereby these demolished structures are disposed at landfills. The current practice is creating a huge amount of waste which is environmentally unfriendly and is becoming the main source of pollution in communities. This paper discusses the potential use of demolished concrete from site tested specimens as a recycled aggregate material for new structural concrete. The mechanical, physical and chemical properties of RCA are studied to understand the suitability in the production of recycled concrete. Tests including gradation, unit weight, soundness, density, and abrasion will be conducted to assess RCA properties. Since the percentage of RCA govern the strength of concrete, a C25 concrete is mixed by the ratio of 25%, 50% & 100% RCA with and without water reducing admixture and a control mixture composed of natural aggregate. The output of this study will highly impact the growing construction industry and communities in Ethiopia thereby reducing waste, saving cost, conserving natural aggregates, building capacity and setting quality standards.

  • PDF

Optimum Abrasing Condition for Recycled Fine Aggregate Produced by Low Speed Wet Abraser Using Sulfur (황산수를 사용한 저속 습식 마쇄법에 의한 순환잔골재의 최적 마쇄조건)

  • Kim, Jin-Man;Kim, Ha-Seog;Park, Sun-Gyu;Kim, Bong-Ju;Kwak, Eun-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.557-563
    • /
    • 2008
  • Recently, the amount of disposed construction materials like demolished concrete is growing fast and the shortage of natural concrete aggregate is becoming serious. Therefore, recycling of aggregate extracted from the demolished concrete is getting important and use of the recycled aggregate for concrete has been seriously considered. However, the use of the recycled aggregate even for low performance concrete is very limited because recycled aggregate which contains large amount of old mortar has very low quality. Therefore, removing the paste sticked to the recycled aggregate is very important in the manufacturing of high quality recycled aggregate. We have studied a series of research according to complex crushing method, which is removed the ingredient of cement paste from recycled fine aggregate using both the low speed wet abrasion crusher as mechanical process and the acid treatment as chemical processes. This paper is to analyze the quality of the recycled fine aggregate produced by those complex method and investigate optimum manufacturing condition for recycled fine aggregate by the design of experiments. The experimental parameters considered are water ratio, coase aggregate ratio, and abrasion time. As a result, data concerning the properties of recycled sand were obtained. It was found that high quality recycled fine aggregate could be to obtain at the condition of the fifteen minute of abrasion-crusher time and the over 1.0 of recycled coarse aggregate ratio.