• Title/Summary/Keyword: demand strength

Search Result 716, Processing Time 0.025 seconds

Study on the Flexible Strength of U-shape Hybrid Composite Beam (신형상 U형 하이브리드 합성보의 휨성능에 대한 연구)

  • Kim, Sung-Bae;Kim, Sang-Seup;Lee, Won-Rok;Kim, Jung-Yeon;Lee, Seung-Bae;Ryu, Deog-Su;Kim, Dae-Hoi
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.521-534
    • /
    • 2012
  • In this research, we carry this study into effect on the basis of utilizing character of composite beam and developing applicable section to some of high strength steel. We evaluated flexural capacity of composite beam that is a unit member through experiments. The existing nominal strength formula of Composite Beam which is a previous method was reviewed and the experiment had been progressive by using each composite members as main variables though the result. Capacity evaluation of U-shape Hybrid Forming Beam(HyFo Beam) which is a new shape show as follow from the result. First, it is resonable to resist demand moment by couple moments which are occurred in concrete compressive-strength and steel tensile-strength. Second, the capacity was stably increased in proportion to the depth of beams and the thickness of steel plates. The last, HyFo Beam was showed as ductile behavior.

Fracture strength of tie wings in a newly-developed polycarbonate bracket (국산 폴리카보네이트 브라켓 윙의 파절 강도에 관한 연구)

  • Sun, Min-Kyu;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.37 no.3 s.122
    • /
    • pp.204-211
    • /
    • 2007
  • Objective: With an increasing demand for esthetic orthodontic appliances, the interest in polycarbonate brackets has also increased. However, polycarbonate bracket wings are prone to fracture. The purpose of this study was to evaluate the clinical usefulness of a newly-developed polycarbonate bracket by measuring the fracture strength of bracket tie wings. Methods: Alice (K.M. Daicom, Seoul, Korea) and Spirit MB (Ormco, Glendora, CA, USA) brackets were used as an experimental and control bracket respectively. Each bracket group was divided into halves. One half was untreated and the other half was treated with 2,000 times of thermocycling between $5^{\circ}C\;and\;55^{\circ}C$. The fracture strength of the wing was measured by a universal testing machine. Results: Alice bracket wings showed significantly higher strength than Spirit MB bracket wings in both untreated and thermocycled bracket cases. Conclusion: Alice brackets may be used clinically in terms of the strength of bracket wings.

An Experimental Study for Strength Improvement of Soft Ground using Hardening Agent and Silicate Mineral Power (수용성 고화재와 규산염광물 결합재를 활용한 지반개량재의 실험적 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Cho, Jinwoo;Lee, JuHyung;Lee, Kyu-Hwan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.8-15
    • /
    • 2015
  • The demand for environmental consideration is on the increase in civil engineering. This study focuses on the development of technology to reduce the use of carbonate cement and improve its performance by using a silicate mineral and hardening agents, and presents the test results for the demonstrative evaluation of the properties of the raw material. Highly active feldspar was used as a binder to augment the bonding of the carbonate cement, and their change in strength was observed after test piece construction with the addition of soluble hardening agent. The uniaxial compression strength of the test piece of the general Portland cement with the addition of 0.5% soluble hardening agent, showed an increase by 33% and that of the test piece of cement with the addition of 70% substituted with feldspar increased by 28%. The strength of viscous soil; classified as soft ground, showed an increase of a maximum of 1.7 times when it was mixed with cement and solidifier depending on the curing period. These tests confirmed that a soluble solidifier is effective for improving the strength of a cement binder and that the highly active feldspar can be used as a binder.

Strain-Based Shear Strength Model for Prestressed Beams (프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델)

  • Kang, Soon-Pil;Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • An analytical model for predicting the shear strength of prestressed concrete beams without shear reinforcement was developed, on the basis of the existing strain-based shear strength model. It was assumed that the compression zone of intact concrete in the cross-section primarily resisted the shear forces rather than the tension zone. The shear capacity of concrete was defined based on the material failure criteria of concrete. The shear capacity of the compression zone was evaluated along the inclined failure surface, considering the interaction with the compressive normal stress. Since the distribution of the normal stress varies with the flexural deformation of the beam, the shear capacity was defined as a function of the flexural deformation. The shear strength of a beam was determined at the intersection of the shear capacity curve and the shear demand curve. The result of the comparisons to existing test results showed that the proposed model accurately predicted the shear strength of the test specimens.

A Study on the Engineering Properties of Ultra High-Strength Concrete Utilizing Crushed Sand (부순모래를 사용한 초고강도 콘크리트의 공학적 특성에 관한 연구)

  • Lee, Sang-Soo;Rho, Hyoung-Nam;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • Recently, the demand of ultra high-rise building is on the increase in korea due to the rapidly changing movement in economic growth and the expansion of national infrastructure. At the same time, the tendency toward the amount used of concrete has greatly increased every year. In addition, as the seriousness of quantity demanded of aggregate is gathering strength, the active areas of research proceeds to do actively in every place in order to review the usability of crushed sand as a part of the countermeasures. And, it needs to establish the quality standard and service guide, etc. for the practical use. Accordingly, this study was to establish the ratio of water-binder materials as three levels like 23.5, 27.5, and 31.5%, and the replacement ratio as three levels like 0, 50, and 100% in order to define the engineering properties of ultra high-strength concrete using the crushed sand. This study was to examine it after establishing the combined condition by the substitute of the fine aggregate percentage and admixture. From the result of this research above, it may be summed up as follows. 1) The more the replacement ratio of crushed sand and the ratio of water-binder materials increased, the mon the fluidity decreased due to the decrease of irregular grain shape of sand and unit combined discretion. 2) This study found out that 100% of replacement ratio of crushed sand was almost similar level to the compressive strength of concrete using the natural sand.

The Prodoction of Kenaf Hand-Made Paper (케나프를 이용한 수초지 제조에 관한 연구)

  • Lim, Ock;Lee, Hye-Ja;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.8
    • /
    • pp.1286-1296
    • /
    • 2007
  • Hanji, the korean traditional papers were mostly made from mulberry paper. But the production and demand of hanji have decreased rapidly because mulberry paper yields were insufficient and handworked hanji procedures were complicated. Recently, the researches on hanji were carried out to improve the properties of hanji. Kenaf fibers have been interested as a substitute resource of mulberry paper for hanji production. In this research, Kenai pulps were manufactured with removal methods of lignin or hemicellulose from kenaf fibers and paper mulberry pulps with traditional alkali methods. Kenaf papers, paper mulberry, and kenaf/paper mulberry mixed papers were manufactured with their pulps. The crystallinity, fiber length, color of the pulps and tensile strength, tear strength, water absorption of the papers were investigated. The results were as follow: The removal rates of lignin of chemical retted kenaf fibers with sodium chlorite reaction for 40 minutes were 70% and were higher than 40% of double retted fibers. Paper mulberry pulps has less lignin and hemicellulose than kenaf differently. The crystallinity of paper mulberry pulps were very low with 60%, but kenaf pulps were 90%. The chemical retted CR-40-1 pulps were similar with paper mulberry pulps on fiber length & fibrilation of fibers. Tensile strength of paper mulberry were higher than kenaf papers because of fibrilation of paper mulberry, but tear strength were lower. Tensile strength and tear strength were improved on kenaf/paper mulberry 30/70 mixed papers.

Gear Strength Evaluation of Electric Axle for Construction Machinery using Simulation Model (Simulation Model을 이용한 건설기계용 전동식 액슬의 기어 강도 평가)

  • Han, Hyun-Woo;Park, Young-Jun;Lee, Ki-Hun;Oh, Joo-Young;Kim, Jeong-Gil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.44-53
    • /
    • 2021
  • As environmental issues have emerged worldwide, emission gas regulations have been strengthened. In the construction machinery sector, studies have been actively conducted to utilize the power source of electric motors owing to the increasing demand for zero emissions. In this study, the gear specifications of an electric axle for construction machinery were selected by considering the specifications of the motor, gear tooth contact pattern, and face load factor. The gear strength evaluation was performed at the system level using the simulation model. The bending and contact strength of the spiral bevel gears and the bending strength of the planetary gear set showed a safety factor of 1 or more. However, the contact strength of the planetary gear set showed a safety factor of 0.92. Conservative results were derived by performing the analysis under the rated load condition of the motor. However, the ratio of the equivalent torque to the rated torque of the motor was 45% or less, hence, it was determined that no difficulties should arise regarding the durability of the axle.

Practical Review of Analysis Techniques for Patronage Ramp-up (Ramp-up 분석기법에 대한 실증적 고찰)

  • Chung, Sung-Bong;Chang, Justin Su-Eun;Kim, Ki-Min;Kim, Jeong-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.17-28
    • /
    • 2008
  • This study examines the ramp-up analysis techniques which have been introduced till now and presents the strength and weakness of each method. The applicability of each technique was reviewed using a case study involving the data of Cheonan-Nonsan motorway usages where seasonal variations of the data were removed. The results showed that all the techniques except F-test have the same ramp-up period of 12 months. The level of Tamp-up was 65%-72% compared to that of the real traffic volume at the beginning of opening. The demand recovered to the stabilized level as time goes on. To apply the methodology to practical demand forecasts actual surveys of real data of traffic demand should be performed. With these efforts to the patronage ramp-up, more reliable demand analyses can be accompanied.

User Bandwidth Demand Centric Soft-Association Control in Wi-Fi Networks

  • Sun, Guolin;Adolphe, Sebakara Samuel Rene;Zhang, Hangming;Liu, Guisong;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.709-730
    • /
    • 2017
  • To address the challenge of unprecedented growth in mobile data traffic, ultra-dense network deployment is a cost efficient solution to offload the traffic over some small cells. The overlapped coverage areas of small cells create more than one candidate access points for one mobile user. Signal strength based user association in IEEE 802.11 results in a significantly unbalanced load distribution among access points. However, the effective bandwidth demand of each user actually differs vastly due to their different preferences for mobile applications. In this paper, we formulate a set of non-linear integer programming models for joint user association control and user demand guarantee problem. In this model, we are trying to maximize the system capacity and guarantee the effective bandwidth demand for each user by soft-association control with a software defined network controller. With the fact of NP-hard complexity of non-linear integer programming solver, we propose a Kernighan Lin Algorithm based graph-partitioning method for a large-scale network. Finally, we evaluated the performance of the proposed algorithm for the edge users with heterogeneous bandwidth demands and mobility scenarios. Simulation results show that the proposed adaptive soft-association control can achieve a better performance than the other two and improves the individual quality of user experience with a little price on system throughput.

Safety of Ductility Demand Based Seismic Design for Circular RC Bridge Columns (원형 철근콘크리트 교각에 대한 연성도 내진설계법의 안전성)

  • Lee, Jae-Hoon;Hwang, Jung-Kil;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.193-202
    • /
    • 2008
  • Seismic design for bridge columns of the current Korea Highway Bridge Design Specifications which adopt full ductility design concept results in reinforcement congestion problems in construction site. It is due to large amount of confining steel is required even for small ductility demand which is a normal case in low and moderate seismicity regions like Korean peninsular. Therefore a new seismic design method based on limited ductility concept was proposed, which is called ductility demand based design method. It uses the new confining steel design equation considering ductility demand and aspect ratio of the column as well as material strength. The purpose of this study is to verify safety of the ductility demand based design method by the confining steel design equation. Eighty nine circular column test results are selected and investigated in terms of ductility factor and its safety. The safety factor for the circular column test results ranges between 1.11 and 3.98, and the average is 1.90. In this paper, the basic concept and detailed design procedure of the ductility demand based design method are also introduced as well as the investigation of the safety with respect to the major variables in confining steel design.