• 제목/요약/키워드: deletion mutant

검색결과 290건 처리시간 0.025초

미국자리공 항바이러스 단백질 II 유전자의 돌연변이 및 PVY-VN 저항성 담배식물체 생산 (Deletion Mutation of Pokeweed Antiviral Protein II Gene and Development of PVY-VN Resistant Tobacco Plants)

  • 강신웅;이영기;박성원;한규웅;김선원;이종철;이청호
    • 한국연초학회지
    • /
    • 제23권2호
    • /
    • pp.123-132
    • /
    • 2001
  • In order to transform pokeweed antiviral protein cDNA to tobacco plant, total RNA was extracted from Phytolacca americana. PAP-II cDNA was synthesized from purified total RNA via RT-PCR and subcloned to recombinant vector pBluescript II SK-. 10 deletion mutant PAP-II cDNA fragments which were sequentially deleted from N-terminal by 90bp were synthesized from PAP-II cDNA except leading frame by PCR with primers designed in our laboratory. To select non-cytotoxic clone, pAc55M was constructed with yeast expression vector pAc55 and multicloning site(MCS). Sequentially deleted mutant PAP-II cDNAs were cloned on downstream of gall promoter of pAc55M. 6 non-cytotoxic deletion mutant PAP-II cDNA were selected. Selected cDNAs were cloned into plant expression vector pKGT101BH for transformation of these clones to plant through Agrobacterium tumefacience. After cloning, recombinant pKGT101BH carrying deleted mutant PAP-IIcDNA were transformed to Nicotiana tabacum cv. NC567. Transformed tobacco plants cultured on shooting and rooting media were transfered to green-house. About four weeks later, these plants were infected with physically infection using carborandum with PVY-VN strain. After 4 weeks, plants resistant to virus were selected , and seeds of these plants were gathered. Southern blot hybridization showed deleted fragments by 220bp and 420bp, so resistant ability of these plants is due to mutant PAP-II cDNA.

  • PDF

해수에서 분리한 장염비브리오의 항생제 내성 및 암피실린 내성 유전자의 동정 (Antibiotic-Resistance Profiles and the Identification of the Ampicillin-Resistance Gene of Vibrio parahaemolyticus Isolated from Seawater)

  • 이근우;박권삼
    • 한국수산과학회지
    • /
    • 제43권6호
    • /
    • pp.637-641
    • /
    • 2010
  • The antibiotics-resistance profiles of 28 strains of Vibrio parahaemolyticus isolated from seawater were investigated. All of the strains studied were resistant to ampicillin (100%), but susceptible to 12 other antibiotics. The minimum inhibitory concentration (MIC) of V. parahaemolyticus to ampicillin was as high as $1,024-2,048\;{\mu}g{\cdot}mL^{-1}$. The phenotype of strain 8 changed from ampicillin-resistant to susceptible with an in-frame deletion mutant of VPA0477, a putative ${\beta}$-lactamase gene, and the MIC for ampicillin of the mutant strain was $1{\mu}g{\cdot}mL^{-1}$. In conclusion, our findings suggest that the VPA0477 gene acts as a ${\beta}$-lactamase in ampicillin-resistant V. parahaemolyticus strains.

Vibrio fluvialis의 Oligopeptide Permease Gene 결손에 의한 생육과 Biofilm 생산의 비교 (Comparisons of growth and biofilm production with Vibrio fluvialis and mutants deficient in oligopeptide permease gene)

  • 이은미;안선희;공인수
    • 한국해양바이오학회지
    • /
    • 제1권2호
    • /
    • pp.84-90
    • /
    • 2006
  • Vibrio fluvialis의 opp gene cluster내에 존재하는 oppABCDF 유전자를 allelic exchange 방법에 의해서 각각의 유전자가 deletion된 mutant를 제조하였다. 각각의 유전자가 deletion된 mutant의 확인은 PCR과 Southern hybridization으로 결정하였다. 각 mutant들을 BHI 배지에서 생육을 비교한 결과 배양후 4시간 이전까지는 wild strain이 모든 mutant들에 비해서 생육이 좋았으나 4시간 이후부터는 같은 수준의 생육을 보여주었다. Biofilm 생산을 비교한 결과 ${\Delta}oppA$ mutant에서 가장 높은 생산성을 보여주었다. ${\Delta}oppC,D,F$ mutant들의 biofilm 생산은 ${\Delta}oppA$ mutant 보다는 낮았으나 wild strain보다는 높은 biofilm 생산성을 보여주었다.

  • PDF

Functional Expression and Characterization of C-terminal Mutant of 4-Aminobutyrate Aminotransferase

  • Sung, Bo-Kyung;Cho, Jung-Jong;Kim, Young-Tae
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.181-188
    • /
    • 1999
  • 4-Aminobutyrate aminotransferase plays an essential role in the 4-aminobutyric acid shunt, converting 4-aminobutyrate to succinic semialdehyde. Recombinant 4-aminobutyrate aminotransferases were overexpressed as their catalytically active forms in E. coli by coproduction with thioredoxin and their solubilities were also dramatically increased. In order to study the structural and functional aspects of the C-terminal domain of brain 4-aminobutyrate aminotransferase, we have constructed a C-terminal mutant of pig brain 4-aminobutyrate aminotransferase and analyzed the functional and structural roles of C-terminal amino acids residues on the enzyme. The deletion of five amino-acid residues from C-terminus did not interfere with the kinetic parameters and functional properties of the enzyme. Also, the deletion did not affect the dimeric structure of the protein aligned along the subunit interface at neutral pH. However, the deletion of the C-terminal region of the protein changed the stability of its dimeric structure at acidic pH. The dissociation of the enzyme acidic, facilitated by the deletion of five amino acids from C-terminus, abolished the catalytic activity.

  • PDF

분열형 효모인 Schizosaccharomyces pombe 로부터 rqh1 돌연변이의 DNA damaging agent sensitivity를 보상하는 유전자의 특성 연구 (Isolation and Characterization of DNA Damaging Agent Sensitivity of rqh1 mutant from Schizosaccharomyce pombe)

  • 이인혜;최인순
    • 생명과학회지
    • /
    • 제17권1호
    • /
    • pp.39-44
    • /
    • 2007
  • 분열형 효모에서 Rqh1은 Top3과 함께 vegetative growth에 필수적이다. $rqh^-$ 돌연변이는 DNA damaging agent에 민감성을 보이는데 이때, 부적절한 유전자 발현, 세포 신장, 염색체의 불안전성, 비정상적인 다중격막, 발아의 결핍을 포함한 넓은 범위의 표현형을 보인다. rqh1-overexpression cell 역시 rqh1 deletion mutant에서 보이는 DNA damaging agent 민감성을 관찰할 수 있다. 논문은 nmtl promoter를 가지는 PREP vector에 Rqhl이 과발현 할 때 나타나는 DNA damaging agent 민감성를 보상하는 유전자를 찾아 $rqh1^+$의 기능을 알아보는 것이다. 여기서 보상능이 보이는 rqh156, rqh172 두 개의 돌연변이를 골라냈다. rqhl deletion mutant의 DNA damaging agent 민감성은 rqh156, rqh172의 발현에 의해 보상 되어지는 것을 확인하였다.

Positional Cloning and Phenotypic Characterization of a New Mutant Mouse with Neuronal Migration Abnormality

  • Park, Chankyu;Ackerman, Susan-L
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.14-17
    • /
    • 2001
  • Positional cloning (map-based cloning) of mutations or genetic variations has been served as an invaluable tool to understand in-vivo functions of genes and to identify molecular components underlying phenotypes of interest. Mice homozygous for the cerebellar deficient folia (cdf) mutation are ataxic, with cerebellar hypoplasia and abnormal lobulation of the cerebellum. In the cdf mutant cerebellum approximately 40% of Purkinje cells are ectopically located within the white matter and the inner granule cell layer (IGL). To identify the cdf gene, a high-resolution genetic map for the cdf-gene-encompassing region was constructed using 1997 F2 mice generated from C3H/HeSnJ-cdf/cdf and CAST/Ei intercross. The cdf gene showed complete linkage disequilibrium with three tightly linked markers D6Mit208, D6Mit359, and D6Mit225. A contig using YAC, BAC, and P1 clones was constructed for the cdf critical region to identify the gene. A deletion in the cdf critical region on chromosome 6 that removes approximately 150kb of DNA was identified. A gene associated with this deletion was identified using cDNA selection. cdf mutant mice with the transgenic copy of the identified gene restored the brain abnormalities of the mutant mice. The positional cloning of cdf gene provides a good example showing the identification of a gene could lead to finding a new component of important molecular pathways.

  • PDF

분열효모 Schizosaccharomyces pombe에서 spThp1 유전자 결실돌연변이의 제조와 특성 조사 (Construction of Schizosaccharomyces pombe spThp1 Null Mutants and its Characterization)

  • 윤진호
    • 미생물학회지
    • /
    • 제42권2호
    • /
    • pp.149-152
    • /
    • 2006
  • 분열효모인 Schizosaccharomyces pombe에서 mRNA의 핵에서 세포질로의 이동에 관여할 것으로 여겨지는 spThp1 유전자의 결실돌연변이주(deletion mutant)를 제조하여 그 특성을 조사하였다. 이배체(diploid) 균주의 한 spThp1 유전자를 결실시킨 후 4분체분석(tetrad analysis)을 수행한 결과, 이 유전자는 생장에 필수적이지 않았다. 또한 결실돌연변이주는 mRNA 수송도 큰 결함을 보이지 않았다. 하지만 spThp1 는 mRNA의 운반체를 암호화하고 있는 spMex67와 합성치사(synthetic lethality)를 보였다. 이 결과는 분열효모의 spThpl도 mRNA의 핵에서 세포질로의 이동에 역할을 하고 있음을 암시한다.

분열효모에서 spNab2 유전자의 결실돌연변이 및 과발현에 대한 분석 (Effects of spNab2 Deletion and Over-Expression on mRNA Export)

  • 윤진호
    • 미생물학회지
    • /
    • 제45권4호
    • /
    • pp.300-305
    • /
    • 2009
  • mRNA의 3' 말단형성 뿐만 아니라, 성숙한 mRNA의 핵에서 세포질로의 이동에 중요한 역할을 하는 출아효모 Saccharomyces cerevisiae의 폴리(A)-RNA 결합단백질인 Nab2와 유사한 분열효모 Schizosaccharomyces pombe의 단백질을 암호화하는 유전자(spNab2로 명명)의 결실돌연변이주(deletion mutant)를 제조하여 그 특성을 조사하였다. 이배체인 S. pombe 균주에 하나의 spNab2 유전자만을 결실시킨 후 4분체분석(tetrad analysis)을 수행한 결과, S. cerevisiae NAB2와는 다르게 이 유전자는 생장에 반드시 필요하지 않았다. 또한 spNab2 결실돌연변이는 mRNA의 핵에서 세포질로의 이동도 정상적으로 보였다. spNab2의 역할을 알아보기 위해, 티아민에 의해 발현이 조절되는 강력한 프러모터를 이용하여 spNab2를 과발현시켰다. spNab2 유전자가 과발현되면, 세포의 생장이 심하게 억제되었으며, 폴리(A)-RNA가 핵 안에 축적되고 세포질에서는 줄어들었다. 또한 GFP 융합단백질을 이용하여 spNab2 단백질의 세포 내 위치를 관찰한 결과, spNab2-GFP는 주로 핵 안에 존재하였지만 세포질에서도 관찰되었다. 이와 같은 결과들은 spNab2 유전자 역시 mRNA의 핵에서 세포질로의 이동에 관여하고 있음을 시사한다.

LAMMER Kinase Modulates Cell Cycle by Phosphorylating the MBF Repressor, Yox1, in Schizosaccharomyces pombe

  • Kibum Park;Joo-Yeon Lim;Je-Hoon Kim;Jieun Lee;Songju Shin;Hee-Moon Park
    • Mycobiology
    • /
    • 제51권5호
    • /
    • pp.372-378
    • /
    • 2023
  • Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

Deletion of cg1360 Affects ATP Synthase Function and Enhances Production of L-Valine in Corynebacterium glutamicum

  • Wang, Xiaochen;Yang, Hongyu;Zhou, Wei;Liu, Jun;Xu, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1288-1298
    • /
    • 2019
  • Bacterial ATP synthases drive ATP synthesis by a rotary mechanism, and play a vital role in physiology and cell metabolism. Corynebacterium glutamicum is well known as an industrial workhorse for amino acid production, and its ATP synthase operon contains eight structural genes and two adjacent genes, cg1360 and cg1361. So far, the physiological functions of Cg1360 (GenBank CAF19908) and Cg1361 (GenBank CAF19909) remain unclear. Here, we showed that Cg1360 was a hydrophobic protein with four transmembrane helices (TMHs), while no TMH was found in Cg1361. Deletion of cg1360, but not cg1361, led to significantly reduced cell growth using glucose and acetic acid as carbon sources, reduced F1 portions in the membrane, reduced ATP-driven proton-pumping activity and ATPase activity, suggesting that Cg1360 plays an important role in ATP synthase function. The intracellular ATP concentration in the ${\Delta}cg1360$ mutant was decreased to 72% of the wild type, while the NADH and NADPH levels in the ${\Delta}cg1360$ mutant were increased by 29% and 26%, respectively. However, the ${\Delta}cg1361$ mutant exhibited comparable intracellular ATP, NADH and NADPH levels with the wild-type strain. Moreover, the effect of cg1360 deletion on L-valine production was examined in the L-valine-producing V-10 strain. The final production of L-valine in the $V-10-{\Delta}cg1360$ mutant reached $9.2{\pm}0.3g/l$ in shake flasks, which was 14% higher than that of the V-10 strain. Thus, Cg1360 can be used as an effective engineering target by altering energy metabolism for the enhancement of amino acid production in C. glutamicum.