• Title/Summary/Keyword: delay time method

Search Result 2,308, Processing Time 0.033 seconds

A method of utilizing the predicted current in the high performance PI current controller with a control time delay (제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.1-3
    • /
    • 2006
  • This paper deals with a novel utilization method of the predicted current in the high performance PI current controller with a control time delay. The inevitable error of the predicted current in the linear servo drive using a permanent magnet linear synchronous motor is analyzed and a modified cross-coupling decoupling synchronous frame PI current controller is proposed in order to improve the current control response under the control time delay. Simulation and experimental results show that the proposed current controller has an improved current control performance under both the electrical uncertainties of a servo drive system and the control time delay.

  • PDF

A Development of Waveform Composition Program and Evaluation of Application on Site (파형합성 프로그램 개발 및 현장 적용성 평가)

  • Yoon, Ji-Sun;Woo, Taek-Gyu;Bae, Sang-Hoon
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.38-46
    • /
    • 2009
  • Recently, as a reduction method of vibration and noise, an electronic detonation which has an accuracy of time and a freedom of input delay time was introduced. A waveform composition program can determine a delay time and accomplish simulation under environment similar to real blast using a delay time. In this study, optimum delay time which controls vibration is obtained and real measurement vibration level is estimated by a waveform composition program.

Time-delay Estimation Method for Performance Enhancement of Underwater Source Localization using Doublet Array (Doublet 센서배열의 수중음원 위치 추정 성능 향상을 위한 시간지연 추정 기법)

  • Sim, Min-Seop;Lee, Ji-Hyeog;Lee, Hyeong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.69-76
    • /
    • 2020
  • The sound signal radiated from an underwater source is received by the hydrophone of the system, including multi-path time-delay and multi-path signal by sea surface and bottom reflection. The system using a time-delay between received signals for the source localization shows performance degradation due to incoherence by the multi-path propagation environment and the disturbance of a marine environment. Various types of array and signal processing have been used for robust source range and bearing estimation in this environment. In this paper, we use a line array composed of doublet array and an estimated time-delay correction method for robust localization performance in a multi-path propagation environment. Three doublet arrays are located on the same line, and the time-delay between signals received on each doublet array is estimated in a two-step procedure. The estimated time-delay value is obtained by the cross-correlation function and corrected by the interaction formula between the center-frequency of received signal and the geometry of the array with respect to aperture. By this proposed procedure, the range and bearing of source from array were calculated. In order to confirm the validity of the proposed method and array, we simulated localization and estimation using the Monte-Carlo method.

An ESPRIT-Based Super-Resolution Time Delay Estimation Algorithm for Real-Time Locating Systems (실시간 위치 추적 시스템을 위한 ESPRIT 기반의 초 분해능 지연 시간 추정 알고리즘)

  • Shin, Joon-Ho;Park, Hyung-Rae;Chang, Eun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.310-317
    • /
    • 2013
  • In this paper an ESPRIT-based super-resolution time delay estimation algorithm is developed for real-time locating system (RTLS) and its performance is analyzed in various multipath environments. The performance of the existing correlation method for time delay estimation seriously degrades in multipath environments where the relative time delays of multipath signals are less than a PN chip. To solve the problem we shall develop a frequency domain super-resolution time delay estimation algorithm using the ESPRIT, the most representative super-resolution direction-of-arrival (DOA) estimation algorithm, and analyze its performance in various multipath environments.

Efficient Channel Delay Estimation for OFDM Systems over Doubly-Selective Fading Channels

  • Heo, Seo Weon;Lim, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2218-2230
    • /
    • 2012
  • In this paper, we propose an efficient channel delay estimation method for orthogonal frequency-division multiplexing (OFDM) systems, especially over doubly-selective fading channels which are selective in both the symbol time domain and subcarrier frequency domain. For the doubly-selective fading channels in single frequency network (SFN), long and strong echoes exist and thus the conventional discrete Fourier Transform (DFT) based channel delay estimation system often fails to produce the exact channel delay profile. Based on the analysis of the discrete-time frequency response of the channel impulse response (CIR) coefficients in the DFT-based channel delay estimation system, we develop a method to effectively extract the true CIR from the aliased signals by employing a simple narrow-band low-pass filter (NB-LPF). The performance of the proposed system is verified using the COST207 TU6 SFN channel model.

Discrete-Time Robust Guaranteed Cost Filtering for Convex Bounded Uncertain Systems With Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.324-329
    • /
    • 2002
  • In this paper, the guaranteed cost filtering design method for linear time delay systems with convex bounded uncertainties in discrete-time case is presented. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytotype less conservative than norm bounded parameter uncertainty. The main purpose is to design a stable filter which minimizes the guaranteed cost. The sufficient condition for the existence of filter, the guaranteed cost filter design method, and the upper bound of the guaranteed cost are proposed. Since the proposed sufficient conditions are LMI(linear matrix inequality) forms in terms of all finding variables, all solutions can be obtained simultaneously by means of powerful convex programming tools with global convergence assured. Finally, a numerical example is given to check the validity of the proposed method.

Timer Selection for Satisfying the Maximum Allowable Delay using Performance Model of Profibus Token Passing Protocol (Profibus 성능 모델에서 최대 허용 전송 지연을 만족할 수 있는 타이머 선정에 관한 연구)

  • Kim, Hyun-Hee;Lee, Kyung-Chang;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.181-184
    • /
    • 2003
  • Recently, the fieldbus becomes an indispensable component for many automated systems. In the fieldbus system, realtime data containing sensor values and control commands has a tendency to rapidly lose its value as time elapses after its creation. In order to deliver these data in time, the fieldbus network should be designed to have short delay compared to the maximum allowable delay. Because the communication delay is affected by performance parameters such as target rotation timer of token passing protocol, it is necessary to select proper parameter settings to satisfy the real-time requirement for communication delay. This paper presents the timer selection method for Profibus token passing networks using genetic algorithm (GA) to meet the delay requirements.

  • PDF

Improved Maximum Access Delay Time, Noise Variance, and Power Delay Profile Estimations for OFDM Systems

  • Wang, Hanho;Lim, Sungmook;Ko, Kyunbyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4099-4113
    • /
    • 2022
  • In this paper, we propose improved maximum access delay time, noise variance, and power delay profile (PDP) estimation schemes for orthogonal frequency division multiplexing (OFDM) system in multipath fading channels. To this end, we adopt the approximate maximum likelihood (ML) estimation strategy. For the first step, the log-likelihood function (LLF) of the received OFDM symbols is derived by utilizing only the cyclic redundancy induced by cyclic prefix (CP) without additional information. Then, the set of the initial path powers is sub-optimally obtained to maximize the derived LLF. In the second step, we can select a subset of the initial path power set, i.e. the maximum access delay time, so as to maximize the modified LLF. Through numerical simulations, the benefit of the proposed method is verified by comparison with the existing methods in terms of normalized mean square error, erroneous detection, and good detection probabilities.

Method for Mobile node in Cloud Computing Environments (클라우드 컴퓨팅 환경에서 이동노드 지원을 위한 기법)

  • Kim, Kiyoung;Yeom, Saehun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.67-75
    • /
    • 2014
  • In this paper, we proposed offloading delay method which determines effectively offloading timing by measuring of handoff delay and offloading time at mobile node side in mobile environment. The propose method measures each of handoff delay and offloading time and making decision of proper offloading timing on mobile node side. Therefore, it is possible to support cloud computing without changing previous implemented cloud computing structure for fixed node in a mobile environment. We compare the energy consumption of server and node to analyze efficiency of proposed method by using existing method of energy consumption measurement. Simulation results shows the reducing energy consumption more than previous method and operation time similar to previous method.

Generation of Ionospheric Delay in Time Comparison for a Specific GEO Satellite by Using Bernese Software

  • Jeong, Kwang Seob;Lee, Young Kyu;Yang, Sung Hoon;Hwang, Sang-wook;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.125-133
    • /
    • 2017
  • Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency (TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point (IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get high precision TWCP results. The $10^{-16}$ level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSYOASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the future domestic satellite navigation system.