• 제목/요약/키워드: delay time method

검색결과 2,312건 처리시간 0.252초

파라미터 불확실성 및 시간지연을 갖는 레이더 김벌 안정화 시스템의 지연종속 퍼지 H 제에 (Delay Dependent Fuzzy H Control of Radar Gimbal Stabilization System with Parameter Uncertainty and Time Delay)

  • 김태식;이해창;이갑래
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.920-929
    • /
    • 2005
  • This paper presents controller design method for nonlinear radar gimbal system with parameter uncertainty and time delay. In order to consider nonlinearity of gimbal bearing frictional torque, we firstly represent fuzzy model for the nonlinear gimbal system, which is achieved by fuzzy combination of linear models through nonlinear fuzzy membership functions. And secondly we propose a delay dependent fuzzy $H_\infty$ controller design method for the delayed fuzzy model with parameter uncertainty and design radar gimbal controller. The designed controller stabilize gimbal system and guarantee $H_\infty$ performance. A computer simulation is given to illustrate stabilized control performances of the designed controller.

An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation

  • Wang, Zhen;Xu, Guoshan;Li, Qiang;Wu, Bin
    • Smart Structures and Systems
    • /
    • 제25권5호
    • /
    • pp.569-580
    • /
    • 2020
  • The identification of delays and delay compensation are critical problems in real-time hybrid simulations (RTHS). Conventional delay compensation methods are mostly based on the assumption of a constant delay. However, the system delay may vary during tests owing to the nonlinearity of the loading system and/or the behavioral variations of the specimen. To address this issue, this study presents an adaptive delay compensation method based on a discrete model of the loading system. In particular, the parameters of this discrete model are identified and updated online with the least-squares method to represent a servo hydraulic loading system. Furthermore, based on this model, the system delays are compensated for by generating system commands using the desired displacements, achieved displacements, and previous displacement commands. This method is more general than the existing compensation methods because it can predict commands based on multiple displacement categories. Moreover, this method is straightforward and suitable for implementation on digital signal processing boards because it relies solely on the displacements rather than on velocity and/or acceleration data. The virtual and real RTHS results show that the studied method exhibits satisfactory estimation smoothness and compensation accuracy. Furthermore, considering the measurement noise, the low-order parameter models of this method are more favorable than that the high-order parameter models.

시변지연을 가지는 LPV시스템의 H 샘플데이타 제어 (H Sampled-Data Control of LPV Systems with Time-varying Delay)

  • 유아연;이상문
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.121-127
    • /
    • 2015
  • This paper considers the problem of sampled-data control for continuous linear parameter varying (LPV) systems. It is assumed that the sampling periods are arbitrarily varying but bounded. Based on the input delay approach, the sampled-data control LPV system is transformed into a continuous time-delay LPV system. Some less conservative stabilization results represented by LMI (Linear Matrix Inequality) are obtained by using the Lyapunov-Krasovskii functional method and the reciprocally combination approach. The proposed method for the designed gain matrix should guarantee asymptotic stability and a specified level of performance on the closed-loop hybrid system. Numerical examples are presented to demonstrate the effectiveness and the improvement of the proposed method.

Delay-dependent Guaranteed Cost Control for Uncertain Time Delay System

  • Lee, In-Beum;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.62.4-62
    • /
    • 2001
  • In this paper, we propose a delay-dependent guaranteed cost controller design method for uncertain linear systems with time delay. The uncertainty is norm bounded and time-varying. A quadratic cost function is considered as the performance measure for the given system. Based on the Lyapunov method, sufficient condition, which guarantees that the closed-loop system is asymptotically stable and the upper bound value of the closed-loop cost function is not more than a specied one, is derived in terms of Linear Matrix Inequalities(LMIs) that can be solved sufficiently. A convex optimization problem can be formulated to design a guaranteed cost controller, which minimizes the upper bound value of the cost function. Numerical examples show the activeness of the proposed method.

  • PDF

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2058-2065
    • /
    • 2004
  • A light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames to obtain the flame propagation speed in freely falling droplet suspension produced by an ultrasonic atomizer. Two MICRO probes are used to monitor time-series signals of OH chemiluminescence from two different locations in the flame. By detecting the arrival time difference of the propagating flame front, the flame propagation speed is calculated with a two-point delay-time method. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the two-point delay-time method by the MICRO system. Furthermore, the relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with three different experimental conditions by changing the fuel injection rate. It was confirmed that the two-point delay-time method with two MICRO probes is useful and convenient to obtain the flame propagation speed and that the flame propagation speed depends on the spray properties.

Genetic Algorithm for Identification of Time Delay Systems from Step Responses

  • Shin, Gang-Wook;Song, Young-Joo;Lee, Tae-Bong;Choi, Hong-Kyoo
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.79-85
    • /
    • 2007
  • In this paper, a real-coded genetic algorithm is proposed for identification of time delay systems from step responses. FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) systems, which are the most useful processes in this field, but are difficult for system identification because of a long dead-time problem and a model mismatch problem. Genetic algorithms have been successfully applied to a variety of complex optimization problems where other techniques have often failed. Thus, the modified crossover operator of a real-code genetic algorithm is proposed to effectively search the system parameters. The proposed method, using a real-coding genetic algorithm, shows better performance characteristics when compared to the usual area-based identification method and the directed identification method that uses step responses.

H filter design for offshore platforms via sampled-data measurements

  • Kazemy, Ali
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.187-194
    • /
    • 2018
  • This paper focuses on the $H_{\infty}$ filter design problem for offshore steel jacket platforms. Its objective is to design a full-order state observer for offshore platforms in presence of unknown disturbances. To make the method more practical, it is assumed that the measured variables are available at discrete-time instants with time-varying sampling time intervals. By modelling the sampling intervals as a bounded time-varying delay, the estimation error system is expressed as a time-delay system. As a result, the addressed problem can be transformed to the problem of stability of dynamic error between the system and the state estimator. Then, based on the Lyapunov-Krasovskii Functional (LKF), a stability criterion is obtained in the form of Linear Matrix Inequalities (LMIs). According to the stability criterion, a sufficient condition on designing the state estimator gain is obtained. In the end, the proposed method is applied to an offshore platform to show its effectiveness.

자기상관함수의 비선형 유추 해석 (Nonlinear Analog of Autocorrelation Function)

  • 김형수;윤용남
    • 한국수자원학회논문집
    • /
    • 제32권6호
    • /
    • pp.731-740
    • /
    • 1999
  • 자기상관함수는 수문시계열의 선형상관 관계를 나타내는 척도롤 널리 이용되고 있다. 그러나 비선형 동역학에서 필수적인 지체시간 또는 무상관시간 $\tau$d를 산정하는데는 적합하지 않을수도 있기 때문에 비선형 상관관계의 척도로 상호정보이론이 추천되어 왔다. 최근에 일부 학자들은 카오스 동역학 분석을 위하여 지체신간 $\tau$d대신에 상태 공간상에 구축된 각 상태 벡타점 성분들의 총시간을 표시하는 지체시간창을 제안하였다. 그러나 지체신간창은 자기상관함수나 상호정보이론에 의해 추정될 수 없다. 기본적으로 지체신간창은 시계열 자료의 상관관계가 가장 작을 최적시간이며 지체시간은 국지적인 최소값 중 첫 번째의 최적시간이다. 본 연구에서는 수문시계열의 지체시간과 지체사간창을 구하기 위하여 C-C밥법이라는 기법을 이용하고, 여기에서 산정된 값들을 근거로 수문시계열의 모형화와 예측에 중요한 선형 또는 비선형 종속성을 파악하고자 한다.

  • PDF

상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어 (Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input)

  • 김종해
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.

간접 주파수 합성기를 이용한 가변 신호지연 회로 설계 (The Design of Variable Delay Line Circuit Using Indirect Frequency Synthesizer)

  • 윤영태;민경일;오승협
    • 전자공학회논문지A
    • /
    • 제29A권2호
    • /
    • pp.33-40
    • /
    • 1992
  • The design method of signal delay line system using indirect frequency synthesizer is presented. The variable signal delay line system with 2[nsec] step of delay time at center frequency 60[MHz], bandwidth 500[KHz] and range 5.24-5.81[x10S0-6Tsec] is designed and fabricated. The results were met with good characteristics to be variable delay time of average 2.01[nsec] per step.

  • PDF