• Title/Summary/Keyword: delay interval

Search Result 326, Processing Time 0.029 seconds

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

Stability Bounds of Unstructured and Time-Varying Delayed State Uncertainties for Discrete Interval Time-Varying System (이산 시변 구간 시스템의 비구조화된 불확실성과 시변 지연시간 상태변수 불확실성의 안정범위)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.871-876
    • /
    • 2023
  • In this paper, we deal with the stable conditions when two uncertainties exist simultaneously in a linear discrete time-varying interval system with time-varying delay time. The interval system is a system in which system matrices are given in the form of an interval matrix, and this paper targets the system in which the delay time of these interval system matrices and state variables is time-varying. We propose the system stability condition when there is simultaneous unstructured uncertainty that includes nonlinearity and only its magnitude and uncertainty in the system matrix of delayed state variables. The stable bounds for two types of uncertainty are derived as an analytical equation. The proposed stability condition and bounds can include previous stability condition for various linear discrete systems, and the values such as time-varying delay time variation size, uncertainty size, and range of interval matrix are all included in the conditional equation. The new bounds of stability are compared with previous results through numerical example, and its effectiveness and excellence are verified.

Dynamically Alternating Power Saving Scheme for IEEE 802.16e Mobile Broadband Wireless Access Systems

  • Chang, Jau-Yang;Lin, Yu-Chen
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.179-187
    • /
    • 2012
  • Power saving is one of the most important features that extends the lifetime of portable devices in mobile wireless networks. The IEEE 802.16e mobile broadband wireless access system adopts a power saving mechanism with a binary truncated exponent algorithm for determining sleep intervals. When using this standard power saving scheme, there is often a delay before data packets are received at the mobile subscriber station (MSS). In order to extend the lifetime of a MSS, the battery energy must be used efficiently. This paper presents a dynamically alternating sleep interval scheduling algorithm as a solution to deal with the power consumption problem. We take into account different traffic classes and schedule a proper sequence of power saving classes. The window size of the sleep interval is calculated dynamically according to the packet arrival rate. We make a tradeoff between the power consumption and packet delay. The method achieves the goal of efficiently reducing the listening window size, which leads to increased power saving. The performance of our proposed scheme is compared to that of the standard power saving scheme. Simulation results demonstrate the superior performance of our power saving scheme and its ability to strike the appropriate performance balance between power saving and packet delay for a MSS in an IEEE 802.16e mobile broadband wireless access system.

A Study on the improvement a Resolution of the Ultrasound Imaging System (초음파 영상장치에서 해상도 향상에 관한 연구)

  • Lee, Hoo-Jeong;Kim, Young-Kil;Lee, Haing-Sei
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1235-1238
    • /
    • 1987
  • In this paper, a new focusing method, to be called the sampled delay focusing (SDF), is proposed. This method improves the lateral resolution in ultrasound imaging system. In SDF, the analog delay lines are no longer necessary because sampling sum process can replace the conventional delay sum process. Also, this method offers continuous dynamic focusing on the resolution pixel basis if the maximum delay time is less than the sampling interval. Second order sampling is adopted in order to extend the sampling interval.

  • PDF

Fault Diagnosis for Cable Using Reflectometry Based on Linear Kalman Filtering (케이블 고장 진단을 위한 선형 칼만필터 기반 반사파 계측법 연구)

  • Lee, Chun-Ku;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.19-21
    • /
    • 2009
  • The reflectometry for locating the fault at a cable is the same as a problem estimating the time delay between the incident and the reflected signals. In this paper, we propose a method for estimating the time delay between the two signals. The proposed method is based on the modeling of the Gaussian enveloped linear chirp signal in the Gaussian noise environment. The phase and the instantaneous frequency of the received signal are estimated by linear Kalman filtering. From the estimated instantaneous frequency, we can measure the time interval between the center frequencies of the incident and the reflected signals. The time interval is the same as the time delay between the incident and the reflected signals. In a simulation assuming that the cable has open fault at the end of the cable, the proposed method showed a good result in estimating the time delay.

  • PDF

Stability Condition for Discrete Interval System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연 시간을 갖는 이산 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.551-556
    • /
    • 2021
  • In this paper, we deal with the stability condition of linear interval discrete systems with time-varying delays and unstructured uncertainty. For the interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new results are derived by the form of simple inequality based on Lyapunov stability condition and have the advantage of being more effective in stability application. Furthermore, the proposed stable conditions are very comprehensive and powerful, including the previously published stable conditions of various linear discrete systems. The superiority of the new condition is proven in the derivation process, and the utility and superiority of the proposed condition are examined through numerical example.

Stability of Time-Varying Discrete State Delay Systems (이산 시변 상태지연시스템의 안정성)

  • Suh, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.43-47
    • /
    • 2002
  • Stability conditions of time-varying discrete state delay systems are proposed. The time-varying state delay is assumed that (i) the magnitude is known to lie in a certain interval (ii) the upper bound of the rate of change is known. Under these conditions, new stability conditions are derived based on switched Lyapunov functions. Stability conditions for both fast time-varying and slowly time-varying delay are considered.

Duty Cycle Scheduling considering Delay Time Constraints in Wireless Sensor Networks (무선네트워크에서의 지연시간제약을 고려한 듀티사이클 스케쥴링)

  • Vu, Duy Son;Yoon, Seokhoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2018
  • In this paper, we consider duty-cycled wireless sensor networks (WSNs) in which sensor nodes are periodically dormant in order to reduce energy consumption. In such networks, as the duty cycle interval increases, the energy consumption decreases. However, a higher duty cycle interval leads to the increase in the end-to-end (E2E) delay. Many applications of WSNs are delay-sensitive and require packets to be delivered from the sensr nodes to the sink with delay requirements. Most of existing studies focus on only reducing the E2E delay, rather than considering the delay bound requirement, which makes hard to achieve the balanced performance between E2E delay and energy consumption. A few study that considered delay bound requirement require time synchronization between neighboring nodes or a specific distribution of deployed nodes. In order to address limitations of existing works, we propose a duty-cycle scheduling algorithm that aims to achieve low energy consumption, while satisfying the delay requirements. To that end, we first estimate the probability distribution for the E2E delay. Then, by using the obtained distribution we determine the maximal duty cycle interval that still satisfies the delay constraint. Simulation results show that the proposed design can satisfy the given delay bound requirements while achieving low energy consumption.

Delay-dependent and Parameter-dependent Robust Stability for Discrete-time Delayed Uncertain Singular Systems (이산시간 지연 불확실 특이시스템의 지연 종속 및 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.788-792
    • /
    • 2010
  • The problem of delay-dependent and parameter-dependent robust stability condition for discrete-time uncertain singular systems with polytopic uncertainty and interval time-varying delay is considered. A new robust stability condition based on parameter-dependent Lyapunov function is derived in terms of LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general condition for both singular and non-singular systems. A numerical example is presented to demonstrate the effectiveness of the proposed method.

Design of a Time-to-Digital Converter without Delay Time (지연시간 없는 시간-디지털 신호 변환기의 설계)

  • Choe, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.323-328
    • /
    • 2001
  • A new time-to-digital converter is proposed which is based on a capacitor and a counter. The conventional time-to-digital converter requires rather longer processing time than the input time interval to obtain an accurate digital output. The resolution of the converted digital output is constant independent on the input time interval. However this study proposes the circuit in which the converted digital output can be obtained without delay time, and both the input time interval and the resolution can be easily improved through controlling passive device parameters.

  • PDF