• 제목/요약/키워드: delay cell

검색결과 626건 처리시간 0.025초

Analysis of Voltage Delay and Compensation for Current Control in H-Bridge Multi-Level Inverter (H-브릿지 멀티레벨 인버터의 전압 지연 해석 및 전류 제어 보상)

  • Park, Young-Min;Ryu, Han-Seong;Lee, Hyun-Won;Jung, Myung-Gil;Lee, Se-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.43-51
    • /
    • 2010
  • This paper proposes an analysis of voltage delay and compensation for current control in H-Bridge Multi-Level (HBML) inverters for a medium voltage motor drive with vector control. It is shown that the expansion and modularization capability of the HBML inverter is improved in case of using Phase-Shifted Pulse Width Modulation (PSPWM) since individual inverter modules operate more independently. But, the PSPWM of HBML has a phase difference between reference voltage and real voltage, which can cause instability in the current regulator at high speed where the ratio of the sampling frequency to the output frequency is insufficient. This instability of the current regulator is removed by adding a proposed method which compensate a phase difference between reference voltage and real voltage. The proposed method is suitable for HBML inverter controlled by PSPWM with low switching frequency and high speed motor drive. The validity of the proposed method is verified experimentally on 6,600[V] 1,400[kW] induction motor fed by an 13-level HBML inverter.

The Cell Resequencing Buffer for the Cell Sequence Integrity Guarantee for the Cyclic Banyan Network (사이클릭 벤얀 망의 셀 순서 무결성 보장을 위한 셀 재배열 버퍼)

  • 박재현
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제41권9호
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, we present the cell resequencing buffer to solve the cell sequence integrity problem of the Cyclic banyan network that is a high-performance fault-tolerant cell switch. By offering multiple paths between input ports and output ports, using the deflection self-routing, the Cyclic banyan switch offer high reliability, and it also solves congestion problem for the internal links of the switch. By the way, these multiple paths can be different lengths for each other. Therefore, the cells departing from an identical source port and arriving at an identical destination port can reach to the output port as the order that is different from the order arriving at input port. The proposed cell resequencing buffer is a hardware sliding window mechanism. to solve such cell sequence integrity problem. To calculate the size of sliding window that cause the prime cost of the presented device, we analyzed the distribution of the cell delay through the simulation analyses under traffic load that have a nonuniform address distribution that express tile Property of traffic of the Internet. Through these analyses, we found out that we can make a cell resequencing buffer by which the cell sequence integrity is to be secured, by using a, few of ordinary memory and control logic. The cell resequencing buffer presented in this paper can be used for other multiple paths switching networks.

The effect of behavioral and emotional change on usage mode and response-delay situation (사용 모드에 따른 반응지연 상황의 행동적, 정서적 효과)

  • Joo, Hyo-Min;Kim, Hyo-Sun;Kim, Hye-Ryeong;Han, Kwang-Hee
    • Science of Emotion and Sensibility
    • /
    • 제13권1호
    • /
    • pp.129-146
    • /
    • 2010
  • System response times(SRTs) are getting important while increasing the function of system. In the past, most research studied SRTs on situation of computer usage. There are lacking the research on simple domain. This study focuses on behavioral and emotional effect on situation of cell phone usage(experience 1; independent variables: degree of SRTs, dependent variables: behavioral and emotional evaluation). And this study investigates the behavioral and emotional effect in same SRTs on different situation(experience 2; independent variables: degree of SRTs, usage mode, dependent variables: behavioral and emotional evaluation, stress, mental strain). The result indicated that long SRTs increased problem solving time and negative emotion. User evaluated the system differently according to usage mode after they performed the same task. In other word, if user had a strong goal, then they felt more negative emotion and mental effort than the user don't have a strong goal. In the goal mode group, it was important there are being of delay or not. This study demonstrated that SRTs and usage mode influence user's emotion and behavior performance in same task.

  • PDF

A 3.2Gb/s Clock and Data Recovery Circuit without Reference Clock for Serial Data Communication (시리얼 데이터 통신을 위한 기준 클록이 없는 3.2Gb/s 클록 데이터 복원회로)

  • Kim, Kang-Jik;Jung, Ki-Sang;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제46권2호
    • /
    • pp.72-77
    • /
    • 2009
  • In this paper, a 3.2Gb/s clock and data recovery (CDR) circuit for a high-speed serial data communication without the reference clock is described This CDR circuit consists of 5 parts as Phase and frequency detector(PD and FD), multi-phase Voltage Controlled-Oscillator(VCO), Charge-pumps (CP) and external Loop-Filter(KF). It is adapted the PD and FD, which incorporates a half-rate bang-bang type oversampling PD and a half-rate FD that can improve pull-in range. The VCO consists of four fully differential delay cells with rail-to-rail current bias scheme that can increase the tuning range and tuning linearity. Each delay cell has output buffers as a full-swing generator and a duty-cycle mismatch compensation. This materialized CDR can achieve wide pull-in range without an extra reference clock and it can be also reduced chip area and power consumption effectively because there is no additional Phase Locked- Loop(PLL) for generating reference clock. The CDR circuit was designed for fabrication using 0.18um 1P6M CMOS process and total chip area excepted LF is $1{\times}1mm^2$. The pk-pk jitter of recovered clock is 26ps at 3.2Gb/s input data rate and total power consumes 63mW from 1.8V supply voltage according to simulation results. According to test result, the pk-pk jitter of recovered clock is 55ps at the same input data-rate and the reliable range of input data-rate is about from 2.4Gb/s to 3.4Gb/s.

The Macroscopic Model for Signalized Intersections to Consider Progression in relation to Delay (지체시간과 연동성을 동시에 고려하는 신호교차로 시뮬레이션 모형의 개발)

  • Han, Yohee;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제11권6호
    • /
    • pp.15-22
    • /
    • 2012
  • A performance index of singalized intersections is a standard to optimize signal control variables and to manage traffic flow. Traffic delays is generally used to minimize the average delay time on intersections or networks, progression efficiency is used to improve travel speed of main cooridors or to provide transit signal priority. We manage traffic flows with only selecting one index between delays and progression according to the objective of traffic management and field characteristics. In real field, the driver's satisfaction is high in any performance criteria when the waiting time is shorter and the unnecessary stop in front of traffic is smaller. This paper aims to develop simulation model to represent real progression with concurrently considering delays and progression. In order to reflect an effect of level of traffic volumes and residual queues which don't be considered in prior progression model, we apply shockwave model with flow-density diagram. We derive Cell Transmission Model of Daganzo in order to develop the delay index and the progression index for the macroscopic simulation model. In order to validate the effect, we analysis traffic delays and progression efficiency with comparing this model to Transyt-7F and PASSER V.

A Study on Cell Planning for High-Speed Portable Internet (휴대인터넷 시스템 셀 설계 방식에 관한 연구)

  • Kim, Myoung-Min;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • 제9권1호
    • /
    • pp.71-78
    • /
    • 2005
  • Nowadays, the demand of HPI(High-speed Portable Internet) has been gradually increased to support the various services of high speed wire line internet such as xDS. HPI can support high speed internet in anyplace, anytime. For successful development of HPI, the performance should be evaluated according to the cell size and/or the number of users and cell design should be carried out based on these criteria. The previous cellular systems using CDMA technique focus on the establishment of link based on power control but HPI systems consider the QoS (Quality of Service) and its performance based on the scheduling technique. The results from the system level simulation show that the throughput is sensitive to the cell size and the number of users has little impact on it. Moreover, the variation of service delay is more sensitive to the number of users but less to the cell size.

  • PDF

Performance Improvement and ASIC Design of OAM Function Using Special Cell Field (특별 셀 영역을 이용한 OAM 기능의 성능 향상 및 ASIC 설계)

  • Park, Hyoung-Keun;Kim, Hwan-Yong
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • 제36C권2호
    • /
    • pp.26-36
    • /
    • 1999
  • In this paper, the novel scheme of OAM performance management function is proposed to supply the most of network resources and reliable services by processing data having various QoS(quality of service) in the view of cell loss and cell delay of ATM networks Also, the special fields of OAM cell are defined in order to improve correlate control, operation, and management technique between networks which is required to flexibility and precision control as detecting the performance information of the variable networks periodically. The proposed OAM function, the input/output function of cell, and the interface function of the accessory device which is likely to the memory/CPU are designed to ASIC. The designed chip is carried out the back-end simulation using Verilog-XL simulator of Cadence. In result, it is able to performs an accurate control in $2{\mu}s$.

  • PDF

Histone Deacetylase Inhibitor Trichostatin A Enhances Antitumor Effects of Docetaxel or Erlotinib in A549 Cell Line

  • Zhang, Qun-Cheng;Jiang, Shu-Juan;Zhang, Song;Ma, Xiao-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3471-3476
    • /
    • 2012
  • Background and Objective: Histone deacetylase (HDAC) inhibitors represent a promising class of potential anticancer agents for treatment of human malignancies. In this study, we investigated the effect of trichostatin A (TSA), one such HDAC inhibitor, in combination with docetaxel (TXT), a cytotoxic chemotherapy agent or erlotinib, a novel molecular target therapy drug, on lung cancer A549 cells. Methods: A549 cells were treated with TXT, erlotinib alone or in combination with TSA, respectively. Cell viability, apoptosis, and cell cycle distribution were evaluated using MTT (3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide) assay, Hochst33258 staining and flow cytometry. Moreover, immunofluorescent staining and Western blot analysis were employed to examine alterations of ${\alpha}$-tubulin, heat shock protein 90 (hsp90), epidermal growth factor receptor (EGFR), and caspase-3 in response to the different exogenous stimuli. Results: Compared with single-agent treatment, co-treatment of A549 cells with TSA/TXT or TSA/erlotinib synergistically inhibited cell proliferation, induced apoptosis, and caused cell cycle delay at the $G_2/M$ transition. Treatment with TSA/TXT or TSA/erlotinib led to a significant increase of cleaved caspase-3 expression, also resulting in elevated acetylation of ${\alpha}$-tubulin or hsp90 and decreased expression of EGFR, which was negatively associated with the level of acetylated hsp90. Conclusions: Synergistic anti-tumor effects are observed between TXT or erlotinib and TSA on lung cancer cells. Such combinations may provide a more effective strategy for treating human lung cancer.

Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

  • Zhu, Jin-Hui;Hong, De-Fei;Song, Yong-Mao;Sun, Li-Feng;Wang, Zhi-Fei;Wang, Jian-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.1017-1021
    • /
    • 2013
  • The cellular apoptosis susceptibility (CSE1L) gene has been demonstrated to regulate multiple cellular mechanisms including the mitotic spindle check point as well as proliferation and apoptosis. However, the importance of CSE1L in human colon cancer is largely unknown. In the present study, we examined expression levels of CSE1L mRNA by semiquantitative RT-PCR. A lentivirus-mediated small interfering RNA (siRNA) was used to knock down CSE1L expression in the human colon cancer cell line RKO. Changes in CSE1L target gene expression were determined by RT-PCR. Cell proliferation was examined by a high content screening assay. In vitro tumorigenesis was measured by colony-formation assay. Cell cycle distribution and apoptosis were detected by flow cytometric analysis. We found CSE1L mRNA to be expressed in human colon cancer cells. Using a lentivirus based RNAi approach, CSE1L expression was significantly inhibited in RKO cells, causing cell cycle arrest in the G2/M and S phases and a delay in cell proliferation, as well as induction of apoptosis and an inhibition of colony growth capacity. Collectively, the results suggest that silencing of CSE1L may be a potential therapeutic approach for colon cancer.

Methanol Extract of Cassia mimosoides var. nomame and Its Ethyl Acetate Fraction Attenuate Brain Damage by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Kim, Ki-Hong;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.255-261
    • /
    • 2010
  • Ischemic stroke, a major cause of death and disability worldwide, is caused by occlusion of cerebral arteries that, coupled with or without reperfusion, results in prolonged ischemia (hypoxia and hypoglycemia) and, ultimately, brain damage. In this study, we examined whether methanol extract of the whole plant of Cassia mimosoides var. nomame Makino that grows naturally in Korea, as well as Japan and China, and some of its fractions obtained by partitioning with organic solvents could protect human hepatocellular carcinoma cells (HepG2) under hypoxic condition by inhibiting apoptosis. We also investigated if these extracts could attenuate brain damage in a rat model of 2 hr of ischemia, generated by middle cerebral artery occlusion, and 22 hr of reperfusion. The whole extract ($100{\mu}g$/mL) maintained the cell number at more than half of that initially plated, even after 24 hr of cell culture under hypoxic condition (3% $O_2$). In the absence of the whole extract, almost all of the cells were dead by this time point. This improvement of cell viability came from a delay of apoptosis, which was confirmed by observing the timing of the formation of a DNA ladder when assessed by gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA), butanol and water, EA extracts were selected for the animal experiments, as they improved cell viability at the lowest concentration ($10{\mu}g$/mL). The whole extract (200 mg/kg) and EA extract (10 and 20 mg/kg) significantly reduced infarct size, a measure of brain damage, by 34.7, 33.8 and 45.2.0%, respectively, when assessed by 2,3,5-triphenyl tetrazolium chloride staining. The results suggest that intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic stroke through inhibition of brain cell apoptosis.