• Title/Summary/Keyword: delamination detection

Search Result 75, Processing Time 0.023 seconds

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

Detection of Real Defects in Composite Structures by Laser Measuring System (레이저 계측시스템에 의한 복합재료 구조물의 실제결함 검출)

  • 정성균;김태형;김경석;강영준
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.19-26
    • /
    • 2002
  • Real defects in composite structures were detected by using laser measuring system. Four types of real defects, that is, impact-induced delamination in a composite laminate, debond in a honeycomb structure, free-edge delamination in a composite laminate and debond in an adhesive joint, were made by applying several types of loads to the specimens. Laser measuring system such as ESPI and shearography technique were used to detect those defects. Thermal loading method, which can easily induce the surface deformation of specimen, was used to detect the defects. Experimental results show that the defects in composite structures could be easily detected by ESPI and shearography technique. Moreover, it shows that ESPI and shearography technique could be usefully applied to the detection of defects in various kinds of composite structures.

Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform

  • Gucunski, Nenad;Kee, Seong-Hoon;La, Hung;Basily, Basily;Maher, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.19-34
    • /
    • 2015
  • One of the main causes of a limited use of nondestructive evaluation (NDE) technologies in bridge deck assessment is the speed of data collection and analysis. The paper describes development and implementation of the RABIT (Robotics Assisted Bridge Inspection Tool) for data collection using multiple NDE technologies. The system is designed to characterize three most common deterioration types in concrete bridge decks: rebar corrosion, delamination, and concrete degradation. It implements four NDE technologies: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW) method. The technologies are used in a complementary way to enhance the interpretation. In addition, the system utilizes advanced vision to complement traditional visual inspection. Finally, the RABIT collects data at a significantly higher speed than it is done using traditional NDE equipment. The robotic system is complemented by an advanced data interpretation. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. This paper concentrates on the validation and field implementation of two NDE technologies. The first one is IE used in the delamination detection and characterization, while the second one is the USW method used in the assessment of concrete quality. The validation of performance of the two methods was conducted on a 9 m long and 3.6 m wide fabricated bridge structure with numerous artificial defects embedded in the deck.

A Study on the Defect Detection of Silicon-Chip Surrounding by Ultrasonic Wave - Automatic Determination Method of Threshold Value by Image Processing - (초음파를 이용할 실리콘 칩 주위의 결함 검출에 관한 연구 - 화상처리에 의한 threshold value의 자동 결정법 -)

  • 김재열;박환규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.87-94
    • /
    • 1991
  • This Paper is to aim the microdefect evaluation of semiconductor Package into a quantitative from NDI's image processing of ultrasonic wave. Accordingly, for the detection of delamination between the Joining condition of boundary microdefect of semiconductor packaga the result from sampling original image, histogramming, binary image or image processing of multinumerloal value is such as the follows. ([) The least limitation from the microdefect detection of the semiconductor package by surveying high ultrasonic wave seems to be about 0.8 $\mu\textrm{m}$ in degree. (2) A result of applying the image processing of multinumerical value to the semiconductor package it was possible to devide the Category into the effectiveness.

  • PDF

Recent Development in Ultrasonic Guided Waves for Aircraft and Composite Materials

  • Rose, Joseph L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.525-533
    • /
    • 2009
  • Emphasis in the paper is placed on describing guided wave successes and challenges for applications in aircraft and composite materials inspection. Guided wave imaging methods discussed includes line of sight, tomography, guided wave C-scan, phased array, and ultrasonic vibration methods. Applications outlined encircles lap splice, bonded repair patch, fuselage corrosion, water loaded structures, delamination, and ice detection and de-icing of various structures.

A Study on the Application Method of Various Digital Image Processing in the IC Package (IC-패키지에 대한 각종 디지탈 화상처리 기술의 적용방법에 대한 연구)

  • Kim, Jae-Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 1993
  • This paper is to aim the microdefect evaluation of If package into a quantitative from NDI's image processing of ultrasonic wave. (1) Automatically repeated discrimination analysis method can be devided in the category of all kind of defects on IC package, and also can be possible to have a sampling of partial delamination. (2) It is possible that the information of edge section in silicon chip surrounding can be extractor by the partial image processing of IC package. Also, the crack detection is possible between the resin part and lead frame.

  • PDF

A Study on the Inspection of Tile Delamination Using Infrared-Ray Method. (열적외선 장비를 활용한 타일박리 조사에 관한 연구)

  • Oh, Kwang-Chin;Choi, Jae-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.511-514
    • /
    • 2005
  • Recently, to obtain the reliable data on the state of the structure, various non-destructive techniques are available. The infrared thermography technique is used in detection of cracks, flaws of concrete structures and buildings. In this paper the infrared thermography technique using the difference of surface temperature was studied. Also this paper is case study that the inspection of building's tile using infrared thermal video.

  • PDF

Impact Behavior Analysis on Composite Laminate with Damages (손상이 있는 복합적층판의 충격거동 해석)

  • Kim, Sung-Joon;Hong, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • To detect the damage in composite structure, nondestructive evaluation techniques are widely used. Tapping test is perhaps the most common technique used for the detection of damage in composite laminates. The method is accomplished by tapping the inspection area with light hammer-like device. The tapping test has the ability that indicates damages in a structure due to a localized change of stiffness. The change in vibration signature may be detected by measurement of the dynamic contact force during impact. In this study, it has been shown that the characteristics of impact force histories from a structure during tapping are changed by the presence of damage such as surface crack and delamination. And impact response analysis has been performed on composite rotor blade with crack to investigate the effect of damage.

Monitoring concrete bridge decks using infrared thermography with high speed vehicles

  • Hiasa, Shuhei;Catbas, F. Necati;Matsumoto, Masato;Mitani, Koji
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.277-296
    • /
    • 2016
  • There is a need for rapid and objective assessment of concrete bridge decks for maintenance decision making. Infrared Thermography (IRT) has great potential to identify deck delaminations more objectively than routine visual inspections or chain drag tests. In addition, it is possible to collect reliable data rapidly with appropriate IRT cameras attached to vehicles and the data are analyzed effectively. This research compares three infrared cameras with different specifications at different times and speeds for data collection, and explores several factors affecting the utilization of IRT in regards to subsurface damage detection in concrete structures, specifically when the IRT is utilized for high-speed bridge deck inspection at normal driving speeds. These results show that IRT can detect up to 2.54 cm delamination from the concrete surface at any time period. It is observed that nighttime would be the most suitable time frame with less false detections and interferences from the sunlight and less adverse effect due to direct sunlight, making more "noise" for the IRT results. This study also revealed two important factors of camera specifications for high-speed inspection by IRT as shorter integration time and higher pixel resolution.

Damage Detection of Fiber-Metal Laminates Using Optical Fiber Sensors (광섬유 센서를 이용한 섬유-금속 적층판의 손상 감지)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.161-164
    • /
    • 2002
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. EFPI was less sensible to the damage signals compared with the optical fiber vibration sensor. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF