• 제목/요약/키워드: dehydration speed

Search Result 25, Processing Time 0.016 seconds

Corrosion and Passivation of Nickel Rotating Disk Electrode in Borate Buffer Solution (Borate 완충용액에서 니켈 회전원판전극의 부식과 부동화)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.533-539
    • /
    • 2013
  • The electrochemical corrosion and passivation of Ni rotating disk electrod in borate buffer solution was studied with potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of nickel and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, impedance data, the rotation speed of Ni-RDE and the pH dependence of corrosion potential and current. Based on the EIS data, an equivalent circuit was suggested. In addition, carefully measured were the electrochemical parameters for specific anodic dissolution regions. It can be concluded from the data collected that the $Ni(OH)_2$ oxide film, which is primarily formed by passivation, is converted to NiO by dehydration under the influence of an electrical field.

Selection of the Optimum Seaming Condition for Spin Drum Using Statistical Method (통계적 기법을 이용한 스핀드럼의 시밍 최적조건 선정)

  • Kim, Eui-Soo;Lee, Jung-Min;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • There are being a lot of studies for achievement of high speed Dehydration, high-strength and Lightweight of washing machine in the latest washing machine business. It is essential that strength of mechanical press-Joining (MPJ) for spin drum is improved to attain that target. MPJ of spin drum is composed of seaming and caulking process. Because Seaming process of MPJ has various design factors such as thickness, bending radius, seaming width, caulking press width and the dynamic factor such as multistage plastic working, elastic recovery, residual stress, the optimum conditions can't be easily determined. Using a design of experiment (DOE) based on the FEM (Finite Element Method), which has several advantages such as less computing, high accuracy performance and usefulness, this study was performed investigating the interaction effect between the various design factor as well as the main effect of the each design factor during drum MPJ and proposed optimum condition using center composition method among response surface derived from regression equation of simulation-based DOE.

Reduction of Dehydrated Cake by the Optimization of Flocculation Factors and the Single Flocculant/Dual Flocculation System (응집인자 최적화 및 다단응집 시스템을 이용한 탈수 케이크 감량)

  • Kim, Hyung-Jun;Bae, Young-Han;Lee, Sang-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.839-846
    • /
    • 2008
  • The flocculation characteristics of polyacrylamide base flocculants were estimated to reduce the moisture content of the dehydrated cakes. The dewaterability for sewage sludge was found to have a marked effect depending on the flocculant type, agitating speed and time, kind of dissolution water, etc. The optimal agitating speed and time were 700 rpm and 3 sec, respectively, in this experimental condition. and the dewaterability was proportion to the agitating speed upto 700rpm. When recycle water as the dissolution water was used, the solution viscosity of all kind of flocculants was decreased. However, the change of its viscosity are not proportioned to the dewaterabilities for each flocculant. Flocculation system of combinations of the first and sencond flocculation using single flocculant was investigated. Effects of the ratio of first and second dosage for dual flocculation on the dewaterability were also investigated. The optimum conditions of dual flocculation system are 75% and 50% as first dosages for low and high viscous flocculant for total dosage of common flocculation, respectively. Based on the results, an overall mechanism of dual flocculation system is proposed and it is envisaged that optimization of flocculation processes in this way can result in considerable savings in cost.

THE ETCHING EFFECTS AND MICROTENSILE BOND STRENGTH OF TOTAL ETCHING AND SELF-ETCHING ADHESIVE SYSTEM ON UNGROUND ENAMEL (법랑질에 대한 total etching과 self-etching 접착제의 산부식 효과와 미세인장결합강도)

  • Oh, Sun-Kyong;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.273-280
    • /
    • 2004
  • The purpose of this study was to evaluate the etching effects and bond strength of total etching and self-etching adhesive system on unground enamel using scanning electron microscopy and microtensile bond strength test. The buccal coronal unground enamel from human extracted molars were prepared using low-speed diamond saw. Scotchbond Multi-Purpose (group SM). Clearfil SE Bond (group SE), or Adper Prompt L-Pop (group LP) were applied to the prepared teeth. and the blocks of resin composite (Filtek Z250) were built up incrementally. Resin tag formation was evaluated by scanning electron microscopy. after removal of enamel surface by acid dissolution and dehydration. For microtensile bond strength test. resin-bonded teeth were sectioned to give a bonded surface area of $1\textrm{mm}^2$. Microtensile bond strength test was perfomed. The results of this study were as follows. 1. A definite etching pattern was observed in Scotchbond Multi-Purpose group. 2. Self-etching groups were characterized as shallow and irregular etching patterns. 3. The results (mean) of microtensile bond strength were SM: 26.55 MPa, SE: 18.15 MPa, LP: 15.57 MPa. SM had significantly higher microtensile bond strength than 8E and PL (p < 0.05). but there was no significant differance between SE and PL.

Lipid Oxidation in Shellfish under the Different Conditions of Drying (패류의 건조조건에 따른 지질산화)

  • LEE Kang-Ho;CHO Tae-Yong;CHO Ho-Sung;LEE Jong-Ho;SHIM Ki-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.143-148
    • /
    • 1998
  • This study was carried out in order to investigate oxidative deterioration during dehydration at $40^{\circ}C,\;50^{\circ}C$ and $60^{\circ}C$ of sea mussel and baby clam. Moisture content was decreased with drying temperature and time. Sea mussel was dehydrated more rapidly than baby clam that had Harder muscle tissue. Both samples were not reached to Aw 0.62 in case of 10 hrs drying at $40^{\circ}C$, But it reached within 8 hrs in sea mussel and 10 hrs in baby clam at $50^{\circ}C$, respectively. Even if $60^{\circ}C$ could speed up drying, it caused to form more free fatty acid, peroxide, thiobarbituric acid and brown pigments. Lipophilic brown pigment was 10 times higher than hydrophilic and actively increased in all samples. fluorescence intensity was also increased with drying temperature and time. Particularly, it was higher sea mussel than baby clam more or less.

  • PDF