• Title/Summary/Keyword: degree of recrystallization

Search Result 37, Processing Time 0.021 seconds

Texture and Mechanical Properties of Ni-W Alloy Tapes Fabricated from Powder Mother Billets (분말 모합금 빌렛으로부터 제조된 Ni-W 합금테이프의 기계적 성질과 집합도)

  • Kim, Min-Woo;Jun, Byung-Hyuk;Ji, Bong-Ki;Jung, Kyu-Dong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.13-18
    • /
    • 2007
  • The mother Ni-W (1-5 wt.%) alloy billets for coated conductor substrate were fabricated by powder metallurgy process. The tensile test results for the sintered Ni-W rods showed the increase of mechanical strength and decrease of ductility with increasing W content due to the solid solution hardening. All the fracture surfaces of the tested specimens showed the typical ductile fracture mode of dimple rupture due to the local necking. The Ni-W alloy billets were made into tape by cold rolling. After the appropriate heat treatment for recrystallization, the brass texture formed by the cold rolling was converted to the complete cube texture. The in-plane and out of plane texture of the tapes estimated by x-ray pole figure were smaller than 9 degree and 7 degree, respectively. The effect of the W addition on the texture development seems not to be significant.

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AS CAST Al-6.5Mg-1.5Zn-0.5Fe ALLOY FOLLOWED BY COLD ROLLING AND SUBSEQUENT ANNEALING

  • SEONG-HEE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.875-878
    • /
    • 2019
  • Microstructures and mechanical properties of as-cast Al-6.5Mg-1.5Zn-0.5Fe alloys newly alloy-designed for the parts of automobile were investigated in detail. The aluminum (Al) sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1mm by multi-pass rolling at ambient temperature and subsequently annealed for 1h at 200~500℃. The as-cast Al sheet was deformed without a formation of so large cracks even at huge rolling reduction of 75%. The recrystallization begun to occur at 250℃, it finished at 350℃. The as-rolled material showed tensile strength of 430 MPa and tensile elongation of 4.7%, however the specimen after annealing at 500℃ showed the strength of 305 MPa and the elongation of 32%. The fraction of high angle grain boundaries above 15 degree increased greatly after annealing at high temperatures. These characteristics of the specimens after annealing were discussed in detail.

Changes in Microstructures of AA3103 sheets deformed by ECAR (ECAR 가공한 AA3103 판재의 미세조직 변화)

  • Lee J. P.;Huh M. Y.;Chung Y. H.;Park J. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.228-230
    • /
    • 2004
  • Samples of the aluminum alloy 3103 sheets were repeatedly deformed by ECAR up to twelve passes. Shear textures developed after the first passage of ECAR. However, the intensity of shear texture components decreased with increasing number of ECAR passages. Observations by TEM and EBSD revealed that the degree of misorientations within the deformed grains increased with increasing number of ECAR passes. Changes in textures and microstructures were hardly observed during recrystallization anneal. Upon subsequent annealing, the samples deformed by a large number of ECAR passes displayed a continuous grain growth. A higher deformation by ECAR resulted in a slower softening, which reflects the stability of ultra-fine grains against the grain growth.

  • PDF

Preparation and Properties of Hydroxyapatite/Methylcellulose for Bone Graft

  • Tak, Woo-Seong;Kim, Dong-Jun;Ryu, Su-Chak
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.145-152
    • /
    • 2018
  • Although many bone graft materials have been developed, powder graft materials are somewhat difficult to use in surgery. To solve this problem, a bone graft material in the form of a viscous paste was prepared. Hydroxyapatite was used as a bone graft material, and methyl cellulose was used to impart viscosity. Three cases of samples were prepared, and freeze-dried block type and sintered specimens were made from the paste. The recrystallization of the graft material in a simulated body fluid and the degree of graft adhesion with a tooth were observed by scanning electron microscopy (SEM). The test for cytotoxicity was carried out and the sample was grafted into the back of a mouse to confirm the presence or absence of side effects in the animal's body. Based on these investigations, composites of this type are expected to be applicable for bone grafts.

The effect of annealing condition on texture and microstructure development of Ni tapes prepared by powder metallurgy (분말야금법으로 제조한 니켈 선재에서 집합조직과 미세조직 발달에 미치는 재결정 열처리의 영향)

  • 이동욱;지봉기;임준형;주진호;정태원;박해웅;정충환;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.81-84
    • /
    • 2003
  • The effect of annealing condition on the texture and microstructure development in Ni tapes fabricated by cold-rolling including powder metallurgy was investigated. The Pole-figure results showed that the Ni tapes annealed at lower temperature than 50$0^{\circ}C$ were the mixture of brass deformation texture and cube texture. The specimens annealed at high temperatures had only well-developed cube texture and the FWHMs of in-plane and out-of-plane were in the range of 8-10$^{\circ}$. The degree of texture was not significantly depended on annealing temperatures. The grain morphologies of Ni tapes prepared at low temperatures showed serrated grain boundaries due to incomplete recrystallization, but the specimens prepared at high temperatures showed stabilized grain shape without serrated grain boundaries.

  • PDF

Cold Roll Bonding of (Ag-10% Ni)/Cu Clad Metals ((Ag-10 % Ni)/Cu 접점재의 냉간압연접합)

  • 김종헌;김성일;박상용
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.136-144
    • /
    • 1997
  • (Ag-10%Ni)/Cu clad metals for electric contact switch were fabricated by cold-roll bonding process. 2 or 3 passes of cold-rolling was carried out for each process to investigate the effect of the rolling passes on the bonding property. The effect of the annealing temperature of copper before the cold-roll bonding on the bond strength was also studied. The specimen bonded with copper annealed below 30$0^{\circ}C$ before roll bonding showed good bond strength. This is because high stored energy in copper promoted the short range diffusion and the grain refinement of copper by the static recrystallization increased the degree of the interfacial coherency. The maximum peel strength of clad metals bonded with Cu annealed below 30$0^{\circ}C$ was 120N.

  • PDF

Preparation of Dextran Microparticles by Using the SAS Process (초임계 반용매 재결정 공정을 이용한 Dextran 입자의 제조)

  • Kang, Dong-Yuk;Min, Byoung-Jun;Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.958-964
    • /
    • 2008
  • In this work, micro-sized dextran particles, which have recently been focused as one of the candidate materials for the Drug Delivery System(DDS), were prepared by means of the Supercritical Antisolvent (SAS) process with $CO_2$. With dimethyl sulfoxide(DMSO) as the solvent, effects of the operating variables such as temperature (308.15~323.15 K), pressure(90~130 bar), solute concentration(10~20 mg/ml), and the molecular weight of the solute(Mw=37,500, 450,000) on the size and morphology of the resulting particles were thoroughly observed. The higher solute concentration led to the larger particles, however, the injection velocity of the solution and pressure did not show significant effects on the resulting particle size. With dextran of the lower molecular weight, the smallest particles were obtained at 313.15 K. On the other hand, the size of the particles from the high molecular weight dextran ranged between $0.1{\sim}0.5{\mu}m$ with an incremental effect of the temperature and pressure. For the solute concentration of 5 mg/ml, the lower molecular weight dextran did not form discrete particles while aggregation of the particles appeared when the solute concentration exceeded 15 mg/ml for the higher molecular weight dextran. It is believed that if the solute concentration is too low, the degree of the supersaturation in the recrystallization chamber would not be sufficient for initiation of the nucleation and growth mechanism. Instead, the spinodal decomposition mechanism leads to formation of the island-like phase separation which appears similar to aggregation of the discrete particles. This effect would be more pronounced for the smaller molecular weight polymer system due to the narrower phase-splitting region.

Genetic Analysis of Apoplastic Proteins in Barley Crosses

  • Chun, Jong-Un;Choi, Kap-Seong;Griffith, Marilyn
    • Plant Resources
    • /
    • v.7 no.2
    • /
    • pp.147-154
    • /
    • 2004
  • Antifreeze proteins (AFPs) accumulate in the leaves of barley during cold acclimation, where they may inhibit ice recrystallization and produce freezing resistance of the plant. Four parental diallel crosses of the barley varieties were used to determine the heritability of AFPs and the relationship between the accumulation level of AFPs and freezing resistance. The concentration of apoplastic proteins in the cold-acclimated leaves was increased in the mean by four-fold over as compared with that of nonacclimated. The diallel cross analyses revealed that the gene of Sacheon 6 was dominant and those of Reno and Dongbori 1 were recessive. The AFPs had high narrow-sense heritabilities. The general combining ability effects of Reno and Dongbori 1 were much higher than the other parents. The bands of 32-kD for GLP, 35-& 28-kD for CLP and 25-, 22- & 16-kD for TLP were observed in the apoplastic extracts from cold-acclimated plants, but there were no clear differences between the parents and Fl hybrids. The concentrations of AFPs were significantly correlated with the degree of freezing resistance, indicating that the concentration of AFPs in the plant is the very important factor for freezing resistance.

  • PDF

Molecular Structure and Gelatinization Properties of Turnip Starch (Brassica rapa L.)

  • Kim, Nam-Hee;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.470-473
    • /
    • 2005
  • Starch was isolated from turnip (Brassica rapa L.), and to elucidate the structure-function relationship its structural and physical properties were characterized. Morphological structure of the starch was analyzed by SEM (Scanning Electron Microscopy). Most of the starch granules were spherical in shape with diameter ranging from 0.5-10mm. Apart from larger granules ($<10\;{\mu}m$) which dominated the population size of turnip starch, significant amount of small ($0.5-2\;{\mu}m$) and mid-size granules (${\sim}\;{\mu}m$) were also detected. It was revealed that presumably, erosion damages occurred due to the attack of amylase-type enzymes on the surface of some granules. Branch chain-length distribution was analyzed by HPAEC (High-Performance Anion-Exchange Chromatography). The chain-length distribution of turnip starch revealed a peak at DP12 with obvious shoulder at DP18-21. The weight-average chain length ($CL_{avg}$) was 16.6, and a large proportion (11.8%) of very short chains (DP6-9) was also observed. The melting properties of starch were determined by DSC (Differential Scanning Calorimetry). The onset temperature ($T_o$) and the enthalpy change (${\Delta}H$) of starch gelatinization were $50.5^{\circ}C$ and 12.5 J/g, respectively. The ${\Delta}H$ of the retrograded turnip starch was 3.5 J/g, which indicates 28.2% of recrystallization. Larger proportion of short chains as well as smaller average chain-length can very well explain relatively lower degree of retrogradation in turnip starch.

Application of Modified Rapid Thermal Annealing to Doped Polycrystalline Si Thin Films Towards Low Temperature Si Transistors

  • So, Byung-Soo;Kim, Hyeong-June;Kim, Young-Hwan;Hwang, Jin-Ha
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.552-556
    • /
    • 2008
  • Modified thermal annealing was applied to the activation of the polycrystalline silicon films doped as p-type through implantation of $B_2H_6$. The statistical design of experiments was successfully employed to investigate the effect of rapid thermal annealing on activation of polycrystalline Si doped as p-type. In this design, the input variables are furnace temperature, power of halogen lamps, and alternating magnetic field. The degree of ion activation was evaluated as a function of processing variables, using Hall effect measurements and Raman spectroscopy. The main effects were estimated to be furnace temperature and RTA power in increasing conductivity, explained by recrystallization of doped ions and change of an amorphous Si into a crystalline Si lattice. The ion activation using rapid thermal annealing is proven to be a highly efficient process in low temperature polycrystalline Si technology.