• Title/Summary/Keyword: degradation enzyme

Search Result 597, Processing Time 0.027 seconds

Proteinases and their Inhibitors in Cartilage and Synovial Fluid Acquired from a Canine Osteoarthritic Model (개 퇴행성 관절염 모델을 이용한 연골과 활액 내 단백질 분해 효소와 억제제의 작용 연구)

  • Seo, Jae-Won;Lee, Hae-Beom;Kim, Nam-Soo;Lee, Young-Hoon;Kang, Hyung-Sub;Kim, In-Shik;Park, Sang-Youel
    • Journal of Veterinary Clinics
    • /
    • v.26 no.2
    • /
    • pp.144-149
    • /
    • 2009
  • Chondrocytes and synovial fluid derived markers are used to monitor for osteoarthritis(OA). Specific inhibitors, known as tissue inhibitors of metalloproteinases(TIMP), regulate the proteolytic activity of matrix metalloproteinases(MMP). This study investigated whether MMP and TIMP levels were altered in synovial fluid and cartilage following the experimental induction of OA in canines. Twenty mature beagle dogs underwent a unilateral surgical transection of the cranial cruciate ligament and the medial collateral ligament as well as a medial meniscectomy. Matrix metalloproteinase-2 and MMP-9 levels were assayed using Western blot and TIMP-2 levels were measured with enzyme-linked immunosorbent assays four weeks after OA induction. Increased MMP-2 expression was observed in chondrocytes isolated from cartilage following OA induction, but MMP-9 expression decreased. Matrix metalloproteinase-2 and MMP-9 levels in synovial fluid from the OA induced joint significantly increased compared to those of the sham group. Tissue inhibitors of metalloproteinase-2 concentrations were higher in chondrocytes from the OA cartilage, yet TIMP-2 remained lower in the synovial fluid of OA. This suggests the elevated release of MMP-9 over MMP-2 into the synovial fluid following the cartilage degradation-related death of chondrocytes after OA. Osteoarthritis can be further deteriorated by increased MMP activity in the synovial fluid because TIMP-2 exist low concentration into the extracellular matrix. As a result, MMP activity, particularly MMP-9 activity, can be useful as a biomarker in diagnosing and monitoring the early stages of canine OA.

Primer Evaluation for the Detection of Toxigenic Microcystis by PCR (독소 생성 Microcystis 검출을 위한 PCR primer의 평가)

  • 이현경;김준호;유순애;안태석;김치경;이동훈
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.166-174
    • /
    • 2003
  • Microcystin produced by cyanobacteria in surface waters, such as eutrophic lake and river, is a kind of serious environmental problems due to its toxicity to human and wild animals. Microcystin is synthesized nonribosomally by the large modular multi-functional enzyme complex known as microcystin synthetase encoded by the mcy gene cluster. Amplification of mcy genes by PCR from cultures and environmental samples is a simple and efficient method to detect the toxigenic Microcystis. In order to evaluate primers designed to detect toxic microcystin-producing strains, 17 cyanobacterial strains and 20 environmental samples were examined by PCR with 7 pairs of primers. Some microcystin-producing cyanobacteria were not detected with FAA-RAA, TOX4F-TOX4R and FP-RP primers. The fragment of unexpected size was amplified with NSZW2-NSZW1 primers in Microcystis strains isolated from the lakes in Korea. TOX1P-TOX1F primers failed in amplification of toxin-producing strains. Only MSF-MSR and TOX2P- TOX2F primers amplified the fragments of mcy genes from 11 strains of microcystin-producing Microcystis. The water samples taken from 20 lakes in Korea were analyzed by PCR using each of the primers. In all the water samples, cyanobacteria capable of producing microcystin were detected by the PCR with TOX2P-TOX2F primers. These results indicate that TOX2P-TOX2F primers are better than the other primers for detection of microcystin-producing Microcystis strains in Korea. The nucleotide sequences of mcy gene in Microcystis aeruginosa NIER10010 suggest genetic diversity of Korean isolates.

Studies on Degradation of Nucleic acid and Related Compounds by Microbial Enzymes (미생물 효소에 의한 핵산 및 그의 관련물질의 분해에 관한 연구)

  • Kim, Sang-Soon
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.111-129
    • /
    • 1970
  • As a series of studies on the nucleic acids and their related substances 210 samples were collected from 76 places such as farm soil, compost of heap, nuruk and meju to obtain microbial strains which produce 5'-phosphodiesterase. From these samples total of 758 strains were isolated by the use of dilution pour plate method. For all isolated strains primary screening of the productivity of RNA depolymerase was performed and useful strains with regard to 5'-phosphodiesterase productivities were identified. For these useful strains optimum condition, the effect of various compounds on the activity of 5'-phosphodiesterase, and the optimum condition for enzyme reaction were discussed. The quantitative of 5'-mononucleotides produced by the action of 5'-phosphodiesterase was performed using anion-exchange column chromatography and their identified was done by paper chromatography, thinlayer chromatography, ultra violet spectrophotometry, and characteristic color reaction using carbazole and schiff's reagent. (1) Penicillium citreo-viride PO 2-11 and Streptomyces aureus SOA 4-21 from soil were identified as a potent 5'-phosphodiesterase producing strains. (2) Optimum culture conditions for Penicillium citreo-viride PO 2-11 strain isolated were found to be pH 5.0 and $30^{\circ}C$, and the optimum conditions for enzyme action of 5'-phosphodiesterase were pH 4.2 and $60^{\circ}C$. Best carbon source for the production of 5'-phosphodiesterase was found to be sucrose and ammonium nitrate for nitrogen source. Addition of 0.01% corn steep liquor or yeast extract exhibited 20% increase in the amount of 5'-phosphodiesterase production compared to the control. 5'-phosphodiesterase produced by this strain was activated by $Mg^{++},\;Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by EDTA, citrate, $Cu^{++},\;CO^{++}$. 5'-phosphodiesterase produced 5'-mononucleotide from RNA at a rate of 65.81%, and among the 5'-mononucleotides accumulated 5'-GMP only was found to have flavorous and the strain was also found lack of 5'-AMP deaminase. Productivity of flavorous 5'-GMP was found to be 186.7mg per gram of RNA. (3) Optimum culture canditions for the isolated Streptomyces aureus SOA 4-21 strain were pH 7.0 and $28^{\circ}C$, and the optimum conditions for the action of 5'-phosphodiesterase were pH 7.3 and $50^{\circ}C$. The best carbon source for 5'-phosphodiesterase production was found to be glucose and that of nitrogen was asparagine. Addition of 0.01% yeast extract exhibited increased productivity of 5'-phosphodiesterase by 40% compared to the non-added control. 5'-phosphodiesterase produced by this strain was activated by $Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by citrate, EDTA, $Cu^{++}$. It was also found that the strain produce 5'-AMP deaminase in addition to 5'-phosphodiesterase. For this reason although decomposition rate was 63.58% the accumulation of 5'-AMP, 5'-CMP, 5'-GMP and 5'-UMP occurred by the breakdown of RNA. In the course of these reaction 5'-AMP deaminase converted 60% of 5'-AMP thus produced into 5'-IMP and flavorous 5'-mono nucleotide production was significantly increased by this strain over the above mentioned one. Production rates were found to be 171.8mg per grain of RNA for 5'-IMP and 148.2mg per gram of RNA for 5'-GMP, respectively.

  • PDF

A Study on the Conversion to Feed Stuff from Cellulosic Biomass (섬유질자원(纖維質資源)의 사료(飼料) 전환(轉換))

  • Lee, Ke-Ho;Sung, Chang-Geun;Chung, Kyu-Ok
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.29-46
    • /
    • 1984
  • To utilize several species of hard wood as raw materials of feed products, fermentation characteristics of cellulosic substrates to single cell protein was investigated, and results were summarized as follows. Among the microorganisms investigated, Tricoderma viride was selected as one of the most cellulolytic. Mixed culture of fungi did not show a synergistic effect on cellulose degradation. When the fungi were cultured at $28^{\circ}C$ for 7 days in a medium containing wheat bran 25 g, cellulose 0.25 g, proteose peptone 0.025 g and tween 800.025 g, cellulotic activities on carboxy methyl cellulose and filter paper reached maximum at 12 hr. The alkali treatment resulted in increased degradation of substrate from 13 to 18% when treated with enzymes for 12h, and reducing sugar formation increased with decreased size of substrates. Glucose was a very good feedback inhibitor of the enzyme from T.viride than that of xylose. When the substrate was rehydrolyzed, hydrolysis rate was 31% to reducing sugars within 12 hr. Quantative anlysis with HPLC showed the ratio of glucose to xylose in sugar syrups as 1.77 to 1. For the purpose of producing cellulosic-single cell protein from the sawdust of mulberry tree, 15 strains of xylose-assimilating yeast were isolated from 42 samples of rotten woods and compost soils and examined for their ability to utilize xylose. Then three strains were selected by their strong xylose-assimilating activities. The cultivative condition, the growth characteristics, and protein and nucleic acid productivities of three strains were investigated. The results obtained were, 1. Wood hydrolysate of mulberry tree was assimilated by 5 strains of CHS-2, CHS-3, ST-40, CHS-12 and CHS-13. 2. The optimum initial pH and temperature for the growth of strain CHS-13 were 4.4 and $30^{\circ}C$. 3. The specific growth rate of strain CHS-13 was $0.23h^{-1}$ and generation time was 3.01 hrs at the optimum condition. 4. CHS-13 strain assimilated 81 % of sugar in wood hydrolysate. 5. CHS-13 strain was identified as Candida guilliermondii var. guilliermondii 6. When the CHS-13 strain was cultured in the wood hydrolysate containing yeast extract, L-protein content was increased with yeast extract concentration. 7. The L-protein and nucleic acid yields from wood hydrolysate were 0.73 mg/ml and $4.92{\times}10^{-2}\;mg/ml$ respectively. 8. An optimal nucleic acid content of CHS-13 strain was observed in the medium containing 0.2% of yeast extract.

  • PDF

Anti-inflammatory effect of Sinhyowoldo-san Extract with regard to Pro-inflammatory Mediators in PMA plus A23187-induced Human Mast Cells (인간 비만세포에서 PMA와 A23187에 의해 유도된 전염증 매개체에 대한 신효월도산 추출물의 항염증 효과)

  • Wi, Gyeong;Yang, Da-Wun;Kang, Ok-Hwa;Kim, Sung-Bae;Mun, Su-Hyun;Seo, Yun-Soo;Kang, Da-Hye;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.117-123
    • /
    • 2014
  • Objectives : Sinhyowoldo-san (SHWDS) is said to be a traditional medicine used for shigellosis, abdominal pain, diarrhea. But mechanism of SHWDS mediated-modulation of immune function is not sufficiently understood. To ascertain the molecular mechanisms of SHWDS 70% EtOH extract on pharmacological and biochemical actions in inflammation, we researched the effect of pro-inflammatory mediators in phorbol-12-myristate-13-acetate (PMA)+ A23187-activated human mast cell line (HMC-1). Methods : In the present research, cell viability was measured by MTS assay. pro-inflammatory cytokine production was measured by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to analyze the activation of mitogen-activated protein kinases (MAPKs), nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). The investigation focused on whether SHWDS inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8), MAPKs and $NF-{\kappa}B$ in PMA+A23187-activated HMC-1 cells. Results : SHWDS has no cytotoxicity at measured concentration (50, 100, and $250{\mu}g/ml$). SHWDS ($250{\mu}g/ml$) inhibits pro-inflammatory cytokine expression in PMA+ A23187-activated HMC-1 cells. Moreover, SHWDS inhibited cyclooxygenase (COX)-2 expression. In activated HMC-1 cells, SHWDS suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2) and c-jun N-terminal Kinase (JNK 1/2). Then, SHWDS suppressed activation of nuclear factor $NF-{\kappa}B$ in nuclear, degradation of IkB ${\alpha}$ in cytoplasm. Conclusions : We propose that SHWDS has an anti-inflammatory therapeutic potential, which may result from inhibition of ERK 1/2, JNK 1/2 phosphorylation and $NF-{\kappa}B$ activation, thereby decreasing the expression of pro-inflammatory genes.

Isolation of Agarivorans sp. KC-1 and Characterization of Its Thermotolerant β-Agarase (한천분해세균 Agarivorans sp. KC-1의 분리 및 내열성 β-아가라제의 특성 규명)

  • Min, Kyung-Cheol;Lee, Chang-Eun;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1056-1061
    • /
    • 2018
  • This article reports an agar-degrading marine bacterium and characterizes its agarase. The agar-degrading marine bacterium, KC-1, was isolated from seawater on the shores of Sacheon, in Gyeongnam province, Korea, using Marine Broth 2216 agar medium. To identify the agar-degrading bacterium as Agarivorans sp. KC-1, phylogenetic analysis based on the 16S rRNA gene sequence was used. An extracellular agarase was prepared from a culture medium of Agarivorans sp. KC-1, and used for the characterization of enzyme. The relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 65, 91, 96, 100, 77, and 35%, respectively. The relative activities at pH 5, 6, 7, and 8 were 93, 100, 87, and 82%, respectively. The extracellular agarase showed maximum activity (254 units/l) at pH 6.0 and $50^{\circ}C$ in 20 mM of Tris-HCl buffer. The agarase activity was maintained at 90% or more until 2 hr exposure at $20^{\circ}C$, $30^{\circ}C$ and $40^{\circ}C$, but it was found that the activity decreased sharply from $60^{\circ}C$. A zymogram analysis showed that Agarivorans sp. KC-1 produced 3 agar-degrading enzymes that had molecular weights of 130, 80, and 69 kDa. A thin layer chromatography analysis suggested that Agarivorans sp. KC-1 produced extracellular ${\beta}$-agarases as it hydrolyzed agarose to produce neoagarooligosaccharides, including neoagarohexaose (21.6%), neoagarotetraose (32.2%), and neoagarobiose (46.2%). These results suggest that Agarivorans sp. KC-1 and its thermotolerant ${\beta}$-agarase would be useful for the production of neoagarooligosaccharides that inhibit bacterial growth and delay starch degradation.

The Quality Characteristics of Rice Mash by Mixing Ratios of Rice and Rice Koji (쌀과 미입국의 배합비율에 따른 쌀 당화액의 품질특성)

  • Kim, Jin-Sook;Lee, Ji-Hyun;Chang, Young-Eun;Kim, Gi-Chang;Kim, Kyung-Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.12
    • /
    • pp.2035-2041
    • /
    • 2013
  • The effects of Aspergillus oryzae rice koji (AO) and Asp. kawachii rice koji (AK) as enzyme preparations, on the quality characteristics of rice mash were invested in this study. The amount of AORM (Asp. oryzae rice mash) and AKRM (Asp. kawachii rice mash) were 50, 100, 200% (w/w) based on 100 g of rice. Firstly, in the titer measurement result on the ${\alpha}$-amylase and glucoamylase activities of AO and AK. On the other hand, the acid protease activity has values of 31.56 unit for AO and 849.17 unit for AK. The sugar solid of the AORM and AKRM groups significantly increased as the rice koji ratio on rice was higher, which were shown with values as high as 17.63~20.53 and 17.51~19.28, respectively. Glucose and maltose were detected for free sugar of AORM. Only glucose was found in AKRM. Citric acid, malic acid, and lactic acid were detected as the organic acid of KORM; oxalic acid, citric acid, and succinic acid were detected for AKRM, and the content increased as the rice koji ratio on rice increased (P<0.05). From the above result, rice koji with useful mold is expected to be used broadly in foods by looking at the fact that it has starch degradation ability and organic acid producibility.

Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis (Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성)

  • Nam, Gyeong-Hwa;Jang, Myoung-Uoon;Kim, Min-Jeong;Lee, Jung-Min;Lee, Min-Jae;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • The enzymatic degradation of xylans is the most versatile way to obtain the high value-added functional compounds or the fermentable sugars for renewable energy. The endo-${\beta}$-xylanases are the major enzymes which hydrolyze the internal ${\beta}$-1,4-linkages of xylan backbones to produce the mixtures of xylooligosaccharides including xylobiose and xylotriose. Among them, glucuronoxylanase GH30 can exclusively hydrolyze the internal ${\beta}$-1,4-linkages of xylans decorated with methylglucuronic acid branches. In the present study, two xylanolytic enzyme (PaXN_10 and PaGuXN_30) genes were cloned from Paenibacillus amylolyticus KCTC 3005, and expressed in Escherichia coli, respectively. PaXN_10 (38.7 kDa) belongs to the endo-${\beta}$-xylanases GH10 family, while PaGuXN_30 (58.5 kDa) is a member of glucuronoxylanase GH30. They share the same optimal reaction conditions at $50^{\circ}C$ and pH 7.0. Enzymatic characterization proposed that P. amylolyticus can utilize the hardwood glucuronoarabinoxylans via the cooperative actions of xylanases GH10 and GH30. The extracellular PaGuXN_30 is secreted into the medium and hydrolyzes glucuronoarabinoxylans to release a series of aldouronic acid mixtures with a methylglucuronic acid branch. The resultant products being transported into the microbial cell are successively degraded into the smaller xylooligosaccharides by the intracellular PaXN_10, which will be utilized for the cellular metabolism.

The Relationship between Heme Oxygenase-1 Expression and Response to Cisplatin Containing Chemotherapy in Advanced Non-Small Cell Lung Cancer (진행성 비소세포폐암에서 Heme oxygenase-1 발현과 Cisplatin을 포함하는 항암화학요법의 치료반응과의 연관성)

  • Yang, Doo Kyung;Roh, Mee Sook;Lee, Kyung Eun;Kim, Ki Nam;Lee, Ki Nam;Choi, Pil Jo;Bang, Jung Hee;Kim, Bo Kyung;Seo, Hyo Rim;Kim, Min Ji;Kim, Seul Ki;Lee, Soo-Keol;Son, Choon Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.3
    • /
    • pp.314-320
    • /
    • 2006
  • Background : The overall response (20-30%) to chemotherapy in non-small cell lung cancer (NSCLC) is quite poor. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme degradation. There is increasing evidence suggesting that the induction of HO-1 might have an important protective effect against oxidative stress including cisplatin containing chemotherapy. This study retrospectively investigated the relationship between HO-1 expression and the response to chemotherapy containing cisplatinin advanced NSCLC patients. Material and Methods : The medical records including the responses to chemotherapy of fifty nine cases were evaluated retrospectively, and the tissue samples of these patients were immunohistochemically stained for HO-1. Results : Forty three of the fifty nine patients(72.8%) showed positive staining for HO-1 in their cancer tissues. There was no significant difference according to the cell type, stage and tumor size. In addition, there was no correlation between HO-1 expression and the responses to chemotherapy. Conclusion : HO-1 expression in tumor tissue dose not predict the response to cisplatin containing chemotherapy in advanced NSCLC. Further prospective studies with a larger number of patients will be needed to confirm these results.

The Role of Heme Oxygenase-1 in Lung Cancer Cells (폐암세포주에서 Heme Oxygenase-1의 역할)

  • Jung, Jong-Hoon;Kim, Hak-Ryul;Kim, Eun-Jung;Hwang, Ki-Eun;Kim, So-Young;Park, Jung-Hyun;Kim, Hwi-Jung;Yang, Sei-Hoon;Jeong, Eun-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.3
    • /
    • pp.304-313
    • /
    • 2006
  • Background : Heme oxygenase-1 (HO-1) is an inducible enzyme that catalyzes the oxidative degradation of heme to form biliverdin, carbon monoxide (CO), and free iron. The current evidence has indicated a critical role of HO-1 in cytoprotection and also in other, more diverse biological functions. It is known that the high expression of HO-1 occurs in various tumors, and that HO-1 has an important role in rapid tumor growth because of its antioxidative and antiapoptotic effects. Therefore, the role of HO-1 was analyzed in human lung cancer cell lines, and especially in the A549 cell line. Material and Methods : Human lung cancer cell lines, i.e., A549, NCI-H23, NCI-H157 and NCI-H460, were used for this study. The expression of HO-1 in the untreated state was defined by Western blotting. ZnPP, which is the specific HO inhibitor we used, and the viability of cells were tested for by conducting MTT assaysy. The HO enzymatic activity, as determined via the bilirubin level, was also indirectly measured. Moreover, the generation of intracellular hydrogen peroxide (H2O2) was monitored fluorimetrically with using a scopoletin-horse radish peroxidase (HRP) assay and 2',7'-dichlorofluorescein diacetate (DCFH-DA). We have also transfected small HO-1 interfering RNA (siRNA) into A549 cells, and the apoptotic effects were evaluated by flow cytometric analysis and Western blotting. Results : The A549 cells had a greater expression of HO-1 than the other cell lines, whereas ZnPP significantly decreased the viability of the A549 cells more than the viability of the other lung cancer cells in a dose-dependant fashion. Consistent with the viability, the HO enzymatic activity also was decreased. Moreover, intracellular H2O2 generation via ZnPP was induced in a dose-dependent manner. Apoptotic events were, then induced in the HO-1 siRNA transfected A549 cells. Conclusion : HO-1 provides new important insights into the possible molecular mechanism of the antitumor therapy in lung cancer.