• Title/Summary/Keyword: degradation efficiency

Search Result 1,102, Processing Time 0.029 seconds

Feasibility Studies on Anaerobic Sequencing Batch Reactor for Sludge Treatment

  • Chang Duk;Hur Joon-Moo;Son Bu-Soon;Park Jong-An;Jang Bong-Ki
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.125-136
    • /
    • 1997
  • Digestion of a municipal wastewater sludge by the anaerobic sequencing batch reactor(ASBR) was investigated to evaluate the performance of the ASBR process at a critical condition of high-solids-content feed. The reactors were operated at an HRT of 10 days with an equivalent loading rate of 0.8-1.5 gVS/L/d at $35^{\circ}C.$ The main conclusions drawn from this study were as follows: 1. Digestion of a municipal wastewater sludge was possible using the ASBR in spite of high concentration of settleable solids in the sludge. The ASBRS with 3- and 4-day cycle period showed almost identical high digestion performances. 2. No adverse effect on digestion stability was observed in the ASBRS in spite of withdrawal and replenishment of $30\%\;or\;40\%$ of liquid contents. A conventional anaerobic digester could be easily converted to the ASBR without any stability problem. 3. Flotation thickening occurred in thicken step of the ASBRS throughout steady state, and floating bed volume at the end of thicken period occupied about $70\%$ of the working volume of the reactor. Efficiency of flotation thickening in the ASBRS could be comparable to that of additional gravity thickening of a completely mixed digester. 4. Solids were accumulated rapidly in the ASBR during start-up period. Solids concentrations in the ASBRS were 2.6 times higher than that in the completely mixed control reactor at steady state. Dehydrogenase activity had a strong correlation with the solids concentration. Dehydrogenase activity of the digested sludge in the ASBR was 2.9 times higher than that of the sludge in the control reactor, and about 25 times higher than that of the subnatant in the ASBR. 5. Remarkable increase in equivalent gas production of $52\%$ was observed at the ASBRS compared with the control reactor in spite of similar Quality of clarified effluent from the ASBRS and control reactor. The increase in gas production from the ASBRS was believed to be combined results of accumulation of microorganisms, higher driving force applied, and additional long-term degradation of organics continuously accumulated.

  • PDF

Comparison of in vitro digestibility and chemical composition among four crop straws treated by Pleurotus ostreatus

  • Nie, Haitao;Wang, Ziyu;You, Jihao;Zhu, Gang;Wang, Hengchang;Wang, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.24-34
    • /
    • 2020
  • Objective: The effects of Pleurotus ostreatus on the feed utilization of broad bean stalks (BBS), rape straw (RS), paddy straw (PS), and corn stalk (CS) was examined. Methods: The four roughages were co-cultured with Pleurotus ostreatus. The chemical composition; enzyme activities of laccase, carboxymethylcellulase (CMCase) and xylanase; carbohydrate and protein fractions (based on The Cornell Net Carbohydrate and Protein System [CNCPS]) were assessed at different days after inoculation (7, 14, 21, 28 d) and un-inoculated roughages (control, 0 d). The digestibility of nutrient components and the gas production of roughage with various incubation times were monitored at 0, 2, 4, 6, 9, 12, 24, 36, 48, 60, and 72 h using an in vitro ruminal fermentation method. Results: A higher CMCase activity (0.1039 U/mL) and earlier time to peak (14 d) were detected in Pleurotus ostreatus cultured with CS (p<0.05). Significantly, the incubation length-dependent responses of cumulative gas production were observed from 24 to 72 hours post fermentation (p<0.05), and these incubation length-dependent effects on cumulative gas production of PS and CS appeared earlier (24 h) for PS and CS than those (48 h) for BBS and RS (p<0.05). The fast-degradable carbohydrate (CA) content for all four roughages significantly increased over time (p<0.05). Nonetheless, increased degradation efficiency for CA treated with Pleurotus ostreatus was detected at both 21 and 28 days of incubation (p<0.05). With the exception of PS (p<0.05), there were no significant difference among the roughages (p>0.05) in slowly-degradable carbohydrate (CB2) at different incubation times (p<0.05). Conclusion: Assessment of the alterations in chemical composition, CNCPS system fractions, and the fermentation kinetics after biological pretreatment may yield a valuable database for evaluating the biological pretreatment of Pleurotus ostreatus in ruminant feed.

Interference Alignment in 2-user X Channel System with Orthogonal and quasi-orthogonal Space-time Block Codes (직교 및 준직교 시공간 블록 부호를 통한 2-사용자 X 채널에서의 간섭정렬)

  • Mohaisen, Islam;Lee, Saet-byeol;Mohaisen, Manar;Elaydi, Hatem
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1785-1796
    • /
    • 2015
  • In this paper, we investigate achieving the full diversity order and power gains in case of using OSTBCs and quasi-OSBCs in the x channel system with interference alignment with more than 2 antennas at each terminal. A slight degradation is remarked in the case of quasi-OSTBCs. In terms of receiver structure, we show that due to the favorable structure of the channel matrices, the simple zero-forcing receiver achieves the full diversity order, while the interference cancellation receiver leads to degradations in performance. As compared to the conventional scheme, simulation results demonstrate that our proposed schemes achieve 14dB and 16.5dB of gain at a target bit error rate (BER) of 10-4 in the case of OSTBCs with 3 and 4 antennas at each terminal, respectively, while achieving the same spectral efficiency. Also, a gain of 10dB is achieved at the same target BER in the case of quasi-OSTBC with 4 antennas at each terminal.

Surface Modification of TiO2 by Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 TiO2 광촉매의 효율향상을 위한 표면 개질 연구)

  • Cho, S.J.;Jung, C.K.;Kim, S.S.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • To improve surface wettability, each sample was treated by atmospheric pressure plasma (APP) using dielectric barrier discharge (DBD) system. Argon and oxygen gases were used for treatment gas to modify the $TiO_2$ surface by APP with RF power range from 50 to 200 W. Water contact angle was decreased from $20^{\circ}$ to $10^{\circ}$ with argon only. However, water contact angle was decreased from $20^{\circ}$ to < $1^{\circ}$ with mixture of argon and oxygen. Water contact angle with $O_2$ plasma was lower than water contact angle with Ar plasma at the same RF power. It seems to be increasing the polar force of $TiO_2$ surface. Also, analysis result of X-ray photoelectron spectra (XPS) shows the increase of intensity of O1s shoulder peak, resulting in increasing of surface wettability by APP. Moreover, each water contact angle increased according to increase past time. However, contact angle increase with plasma treatment was lower than without plasma treatment. Additionally, the efficiency of $TiO_2$ photocatalyst was improved by plasma surface-treatment through the degradation experiment of phenol.

Technical Evaluation of MBR Process for the Wastewater Treatment of Beverage Fabrication Processes (음료수 제조 공정 폐수의 MBR 처리 기술 평가)

  • Jung, Cheol Joong;Park, Jong Min;Kim, Youn Kook
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • Manufacturing facility for non-alcoholic drink, the parts of the food industry, disposes wastewater which includes high organic concentration and low nitrogen, phosphorus concentration. For this kind of wastewater, the treatment plant consists mainly of aerobic reactor and chemical coagulation process. And sand-filter or activated carbon process is normally installed further. However, aerobic reactor must have long HRT to treat high concentration of organic contaminant included in this wastewater, so the large site area is required. And settling tank which is normally applied for wastewater treatment facility has some problems such as water quality degradation caused by the sludge spill. To solve these problems, we applied MBR system for the wastewater. And the MBR pilot plant was installed nearby the wastewater treatment facility of W food factory and operated during long term to evaluate treatment efficiency. This plant was operated about 3 months and than the result was 97% of organic removal rate on conditions of flow rate $20m^3/day$, HRT 29 hr, recycle 4Q. However, contaminant removal ratio of bio-reactor decreased and TMP of membrane increased rapidly on more conditions.

Analysis of Performance, Energy-efficiency and Temperature for 3D Multi-core Processors according to Floorplan Methods (플로어플랜 기법에 따른 3차원 멀티코어 프로세서의 성능, 전력효율성, 온도 분석)

  • Choi, Hong-Jun;Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • The KIPS Transactions:PartA
    • /
    • v.17A no.6
    • /
    • pp.265-274
    • /
    • 2010
  • As the process technology scales down and integration densities continue to increase, interconnection has become one of the most important factors in performance of recent multi-core processors. Recently, to reduce the delay due to interconnection, 3D architecture has been adopted in designing multi-core processors. In 3D multi-core processors, multiple cores are stacked vertically and each core on different layers are connected by direct vertical TSVs(through-silicon vias). Compared to 2D multi-core architecture, 3D multi-core architecture reduces wire length significantly, leading to decreased interconnection delay and lower power consumption. Despite the benefits mentioned above, 3D design technique cannot be practical without proper solutions for hotspots due to high temperature. In this paper, we propose three floorplan schemes for reducing the peak temperature in 3D multi-core processors. According to our simulation results, the proposed floorplan schemes are expected to mitigate the thermal problems of 3D multi-core processors efficiently, resulting in improved reliability. Moreover, processor performance improves by reducing the performance degradation due to DTM techniques. Power consumption also can be reduced by decreased temperature and reduced execution time.

The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology) (미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성)

  • Park, Jungyu;Tian, Dongjie;Lee, Beom;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experiments methods and types of organic matters. Recent year, a MET (Microbial electrochemical technology) is a promising technology for producing sustainable bio energies from AD via rapid degradation of high concentration organic wastes, VFAs (Volatile Fatty Acids), toxic materials and non-degradable organic matters with electrochemical reactions. In this study, methane yields of food waste leachate and sewage waste sludge were evaluated by using BMP (Biochemical Methane Potential) and continuous AD tests. As the results, methane production volume from the anaerobic digester equipped with MET (AD + MET) was higher than conventional AD in the ratio of 2 to 3 times. The actual methane yields from all experiments were lower than those of theoretical value of glucose. The methane yield, however, from the AD + MET occurred similar to the theoretical one. Moreover, biogas compositions of AD and AD + MET were similar. Consequently, methane production from anaerobic digester with MET increased from the result of higher organic removal efficiency, while, further researches should be required for investigating methane production mechanisms in the anaerobic digester with MET.

The shelf life of 1,2-indandione/zinc and polyvinylpyrrolidone solutions used to develop latent fingermarks deposited on the surface of thermal paper (감열지에 부착된 잠재지문을 현출하는데 사용하는 1,2-indandione/zinc와 polyvinylpyrrolidone 용액의 보존기한)

  • Hong, Sungwook;Kim, Yujin;Kim, Hyunjung;Kim, Hyerim;Lee, Junchul;Yu, Seoungho
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.312-318
    • /
    • 2017
  • The shelf life of 1,2-indandione/zinc (1,2-IND/Zn) solution and polyvinylpyrrolidone (PVP) solution, which are known as reagents for developing latent fingermarks deposited on the surface of thermal paper, was studied. The standard latent fingermarks used for comparisons were artificial latent fingermarks printed on thermally sensitive and non-sensitive surfaces with the same intensity. Upon treatment of standard latent fingermarks with the pre-mixed 1,2-IND/Zn and PVP solutions, the fingermarks could be successfully developed until 3 days after the preparation of the mixture. However, from the third day after mixing the reagents, blackening was observed on the surface of the thermal paper, indicating deterioration of the reagent performance. The 1,2-IND/Zn and PVP solutions separately stored without mixing in advance were mixed immediately before use, and the development efficiency of the latent fingermarks deposited on the surface of thermal paper was observed. The performance of the PVP solution decreased after 20 days from the preparation of the reagent. It was also found that the shelf life of 1,2-IND/Zn and PVP mixture was determined by the PVP solution. The effect of oxygen and moisture on the degradation of PVP was investigated. It was found that the performance of the PVP solution deteriorated because of the influence of moisture, though it was not affected by oxygen.

Treatment of Organic Wastes and Reuse of Bio-energy from the Anaerobic Digestion - Thermophilic Oxic Precess (혐기성 소화-고온 호기법에 의한 유기성폐기물의 처리와 생성열의 재활용 검토)

  • Yang, Jae-Kyung;Choi, Kyung-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.79-89
    • /
    • 2001
  • Anaerobic Digestion - Thermophilic Oxic Process(ADTOP) has been known to be one way reducing and composting of organic wastes without draining or forming excess sludge. It could be completely performed by the evaporation of water using the bio-energy from the microbial degradation of organic. In the present study the complete treatment of Chinese restaurant wastes was conducted and utility of bio-energy produced from the ADTOP was estimated. Base on results, it could be concluded as follows; 1) chinese restaurant wastes could be completely treated using the TOP without draining or excess sludge. Maximum volumetric loading rate was determined as $55.0kg-garbage/m^3$. Input water was almostly evaporated and 90.5% of carboneous organic wastes was conversed to carbondioxide. 2)The optimum volumetric loading rate which is acceptable to maintain over $55^{\circ}C$ in the anaerobic digester was determined as $45kg-garbage/m^3{\cdot}d$. 3) The optimum HRT was at least over 10 days in order to maintain about $50^{\circ}C$ in the anaerobic digester using bio-energy produced from TOP. Therefore the utilization of bio-energy produced from TOP could be used in the process which had long HRT such as the anaerobic digestion. 4) The efficiency of anaerobic digester rate were over 90% by the ADTOP under the organic loading rate of $1.1kg-COD/m^3{\cdot}d$, 50kg-Chinese restaurant garbage and $250{\ell}/m^3{\cdot}min$ of the aeration rate.

  • PDF

Long-term Trend Analysis of Korean Air Quality and Its Implication to Current Air Quality Policy on Ozone and PM10 (국내 기준성 대기오염물질의 권역별 장기 추이 및 원인 분석: PM10과 오존을 중심으로)

  • Kim, Jeonghwan;Ghim, Young Sung;Han, Jin-Seok;Park, Seung-Myung;Shin, Hye-Jung;Lee, Sang-Bo;Kim, Jeongsoo;Lee, Gangwoong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Nation-wide systematic and comprehensive measurements of air quality criteria species have been made over 340 sites currently in Korea since 1990. Using these data, temporal and spatial trends of $SO_2$, $PM_{10}$, $NO_2$, $O_3$, CO and $O_x(NO_2+O_3)$ were analyzed to characterize and evaluate implementing efficiency of air quality policy and regulations. Due to strict and effective policy to use cleaner fuels in late 1980s and 1990s, the primary pollutants, such as $SO_2$, CO, and $PM_{10}$ decreased sharply by early 2000s in all parts of Korea. After this period, their concentrations declined with much lower rates in most parts of Korea. In addition, isolated but noticeable numbers of places, especially in major ports, newly developing towns and industrial parks, sustained high levels or even showed further degradation. Despite series of emission control strategies were enforced since early 1990s, $NO_2$ concentrations haven't changed much till 2005, due to significant increase in number of automobiles. Nevertheless, we confirmed that the staggering levels of $NO_2$ and $PM_{10}$ improved evidently after 2005, especially in Seoul Metropolitan Area (SMA), where enhanced regulations for $NO_2$ and $PM_{10}$ emissions was imposed to automobiles and large emission sources. However, their decreasing trends were much lessened in recent years again as current air quality improvement strategies has been challenged to revise further. In contrast to these primary species, annual $O_3$, which is secondary product from $NO_2$ and volatile organic compounds (VOCs), has increased consistently with about 0.6 ppbv per year in every urban part of Korea, while yearly average of daily maximum 8-hour $O_3$ in summer season had a much higher rate of 1.2 ppbv per year. Increase of $O_3$ can be explained mainly by reductions of NO emission. Rising background $O_3$ in the Northeast Asia and increasing oxidizing capacity by changing photochemistry were likely causes of observed $O_3$ increase. The future air quality policy should consider more effective ways to lower alarming level of $O_3$ and $PM_{10}$.