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요  약

본 논문에서는 각 단말에 2개 이상의 안테나의 간섭 정렬을 이용한 X채널에서 직교 및 준직교 시공간 블록 부호를 
통하여 더 높은 다이버시티와 전력 이득을 달성하고자 했다. 제안한 방법으로 다이버시티 차수는 직교 시공간 블록 
부호에서 최대에 도달한 반면, 준직교 시공간 블록 부호에서는 유효 채널 행렬의 비 직교성에 의해 약간의 성능 저하
가 나타났다. 수신기의 유효 채널 행렬에서의 유리한 구조에 의해 단순 제로 포싱 수신기는 최대 다이버시티 차수를 
달성하는 반면, 간섭 제거 수신기는 성능이 저하되었다. 기존의 방법과 비교했을 때, 시뮬레이션 결과는 제안된 방법
이 같은 스펙트럼 효율을 얻으면서, 3-4개의 안테나의 각 단의 직교 시공간 블록 부호의 경우 각각 목표 비트 에러율 

에서 14dB와 16.5bB의 이득을 얻는 것을 증명하였다. 또한 4개의 안테나의 각 단의 준직교 시공간 블록 부호의 
경우 같은 목표 비트 에러율에서 10dB의 이득을 얻었다.

ABSTRACT

In this paper, we investigate achieving the full diversity order and power gains in case of using OSTBCs and 
quasi-OSBCs in the x channel system with interference alignment with more than 2 antennas at each terminal. A slight 
degradation is remarked in the case of quasi-OSTBCs. In terms of receiver structure, we show that due to the favorable 
structure of the channel matrices, the simple zero-forcing receiver achieves the full diversity order, while the 
interference cancellation receiver leads to degradations in performance. As compared to the conventional scheme, 
simulation results demonstrate that our proposed schemes achieve 14dB and 16.5dB of gain at a target bit error rate 
(BER) of  in the case of OSTBCs with 3 and 4 antennas at each terminal, respectively, while achieving the same 
spectral efficiency. Also, a gain of 10dB is achieved at the same target BER in the case of quasi-OSTBC with 4 
antennas at each terminal.

키워드 : 간섭 정렬, X 채널, MIMO 검출, 직교 시공간 블록 부호, 준직교 시공간 블록 부호

Key word : Interference alignment, x channel,  MIMO detection, orthogonal STBC, quasi-orthogonal STBC
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Ⅰ. Introduction

In wireless communications systems, interference 
plays a major role in defining the achievable 
performance and capacity [1, 2]. In conventional 
receivers, in multi-user scenarios, the interference is 
either ignored, hence considered as an additional noise, 
or jointly decoded via employing successive interference 
cancellation (SIC) detectors [3-5]. In both cases, the 
dimension of the interference remains the same, leading 
to degraded performance and diversity gain in the first 
case, while powerful algorithms should be employed in 
the case of SIC so as to avoid degradation in the 
performance.

Interference alignment is a transmission technique 
used to reduce the dimensions of the interference while 
maintaining the useful signals discernible at the intended 
receivers. This is achievable by precoding the transmit 
signals such that the interference is aligned at unintended 
receivers [6]. As such, interference is removed at the 
intended receivers using simple mathematical operations 
leading to an interference-free system, where appropriate 
decoding algorithms can then be used to decode the 
useful signals. In [6], Jafar and Shamai proposed a linear 
alignment algorithm for the two-user X channel, that 
achieves the maximum data rate of (4/3 × )  

symbols/channel use and a diversity gain of 1, with   

denoting the number of antennas at each terminal.
In addition to the multiplexing gain, quantified by 

symbols/channel use, the diversity gain is an important 
measure of the system performance. When the channel is 
in deep fading, systems with unity diversity gain suffer 
from low signal-to-noise ratio (SNR) at the receiver side, 
leading to degradation in the bit-error rate (BER). 
Several diversity techniques have been proposed in the 
literature to explore further diversity gain [7-9]. In [10], 
a technique that combines interference alignment in X 
channel and Alamouti diversity scheme with two 
transmit antennas has been proposed to achieve the 
maximum multiplexing gain of ( × 4/3 = 8/3) and the 

full diversity gain of 2, which is equal to the number of 

antennas at each of the four nodes. Furthermore, the 
proposed scheme inherits the space-time orthogonality 
of the Alamouti algorithm, hence a simple linear 
receiver, that avoids computationally complex matrix 
inversion, is required to achieve the aforementioned 
gains.

In this paper, we propose several transmitter and 
receiver structures for the case of more than 2 transmit 
antennas aiming to increase the diversity and power 
gains. First, we examine the combination of orthogonal 
space-time block codes (OSTBC) for  = 3 and 4 with 
code rate Rc = 1/2 built on the 2-user X channel system 
with interference alignment. Due to the orthogonality of 
the codes, a modified interference cancellation receiver 
(ICR) is used to decouple the symbols transmitted from 
the two transmitters. Surprisingly enough, due to the 
special structure of the effective channel matrices, we 
show that the simple linear zero-forcing(ZF) receiver 
achieves the full diversity without requiring explicit 
matrix inversion. We extend this scenario to the 
quasi-orthogonal STBCs (quasi-OSTBCs) with  = 4, 
where in addition to proposing the interference 
alignment structure, we introduce a modified version of 
the ICR that takes into consideration the non-orthogonal 
nature of the codes. Note that the extension to the case of 

  
 for any positive integer n is possible. 

Furthermore, we show once again that the simple ZF 
receiver is superior to the ICR in terms of power and 
diversity gains. Due to the non-orthogonality of the 
effective channel matrices, the achieved diversity in this 
later case slightly lacks the optimum value. Further 
research will be conducted to detail the reasons behind 
such a degradation and investigate methods to minimize 
it. It is fundamental to mention that in this paper we don't 
claim that our proposed techniques achieve the 
maximum multiplexing gain of ( × 4/3). However, at 
the same spectrum efficiency, quantified by bits/Hz/ 
channel use, our proposed schemes achieve far better 
performance in terms of power and diversity gains.

The rest of the paper is as follows. In Section II we 
introduce the system model and review the LJJ scheme. 
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In Sections III and IV, we introduce the OSTBCs and 
quasi-OSTBCs built on the 2-user X channel with 
interference alignment, respectively. In Section V we 
present the simulation results and in Section VI we draw 
the final conclusions.

Ⅱ. System model and related work

2.1. System model

Consider a two-user X channel system as depicted in 
Figure 1, with each of the two transmitters equipped with 
 antennas and each of the receivers equipped with 

antennas, where in the deployed scenario  . Each 

transmitter has independent symbols intended for each 
of the receivers. These symbols are drawn independently 
from a finite modulation set Ω. Transmitter 1 has 

   ⋯ 
 and    ⋯ 

 intended for 

receiver 1 and receiver 2, respectively. In 
 , the 

superscript   denotes the index of the symbol, the first 
subscript  denotes the index of the transmitter, and the 
second subscript  denotes the index of the intended 

receiver. Likewise, transmitter 2 has    ⋯ 
 

and    ⋯ 
 intended for receiver 1 and 

receiver 2, respectively. Vectors  , for   , are 

encoded by the STBC block to generate the × 

matrices , for   , with   denoting the number 

of channel uses. Finally, encoded symbols are 
beamformed and linearly combined to generate the 
× block codes  , for   . To denote the 

channels between the transmitters’ and the receivers’ 
antennas, we use H, G, A and B to denote the  ×  

matrices coupling transmitter 1 and receiver 1, 
transmitter 2 and receiver 1, transmitter 1 and receiver 2, 
transmitter 2 and receiver 2, respectively. Each entry in 

the channel matrices is i.i.d.CN , where CN  
denotes a complex Gaussian random variable with mean 

and variance of  and . The × signal matrices 
received at the antennas of receiver 1 and receiver 2, 

그림 1. 채널 모델과 계통도

Fig. 1 Channel model and system diagram

respectively, are given by:

 
 

                      (1)

The elements of the noise matrices  and   are 

i.i.d.CNn . The block codes are given as following:

   
   

                    (2)

The beamforming matrices   for    are 

designed to align the interference at the unintended 

receivers. That is, 
  and 

  are aligned at receiver 2, 

whereas 
  and 

  are aligned at receiver 1. The 

zero-forcing precoding is a suitable choice to design the 
beamforming matrices  for   . As such, they 

are given by:

 
   



  
   


              (3)

where the real-valued scalars ,, , and  satisfy 

the power constraint 
  , where ∙  

denotes the transpose operator. Hence, 

 
  for any matrix R.

2.2. Review of the LJJ scheme

In the LJJ scheme [10], each node is equipped with 2 
antennas where each transmitter has  symbols 
intended for each of the two receivers. As such, at each 
channel use a total of × symbols are 
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transmitted. These symbols are encoded using Alamouti 
scheme as following:

 












 




 



 

  











 


 



 


            (4)

for i = 1, 2, where i refers to the index of the transmitter. 
Note that the conjugated symbols are present in the 
same row of  and . At the receivers, the 

corresponding rows in the receive block codes are 
conjugated so that the system can be re-written as a 
function of conjugate-free symbols. The details of the 
decoding process which is partially similar to that 
depicted in[10].

Ⅲ. Orthogonal STBC with Rc = 1/2 top of 

the x-channel With Interference 

Alignment

It is proven that Alamouti scheme is the only OSTBC 
with rate   . For more than 2 transmit antennas, 

several orthogonal codes have been derived with lower 
rates (i.e.,   ). In the following section, we 

investigate the integration of OSTBC with    in the 

system depicted in Figure 1. Our goal is to increase the 
diversity gain [12], while maintaining the same 
capacity, quantified by bits/channel use, as compared to 
the LJJ algorithm.

3.1. Alignment design for orthogonal STBC with 

   

For the case of   , the matrices  and  for 

   are designed as follows.












  

  
  

  
 

 
 




  

  
  

  
 

 
 




  

  
  

  
 

 
 





(5)

and











 
  

  
  

 
 

 
 



 
  

  
  

 
 

 
 



 
  

  
  

 
 

 
 





(6)

with ∙ denoting the transpose operator. The received 
signal matrices at receiver 1 and 2 are given in (1), where 
 and  are given in (2) with H, G, A, B and  for 

  ∈ × , whereas  and ∈ × . Due to 

system symmetry, we focus in the sequel on the decoding 
at receiver 1. Let  , whose  element denoted by 

, be the  column of  with conjugate operator 

applied to rows 9 to 12, then










































































































































 (7)

where   and  have the same structure. Due to space 

limit, we give only  as follows:











        

 
 

 

        
 

  


        
  

 


         
 

 


 (8)

The aligned interference coefficient matrices are 
given by:

 











           
           
           
           



       (9)

 











           
           
           
           



            (10)

 











           
           
           
           



            (11)

where   
 

  for   ⋯
The aligned interference can be simply removed by 

constructing the set of vectors.
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 
















 
 
 
 

for   ⋯       (12)

where the system becomes interference-free and is 
represented by the following equation.











































































































        (13)

with the 8×4 matrices   and  being derived from   

and   by removing their zero rows.

3.2. Alignment design for orthogonal STBC with 

   

For the case of   , the matrices  and  for 

   are designed as follows.












 

 
 

  
 

 
 




  

  
 

  
 

 
 




 

  
  

  
 

 
 




  

 
  

  
 

 
 





   (14)

and











 
 

 
 

 
 

 
 



 
  

  
 

 
 

 
 



 
 

  
  

 
 

 
 



 
  

 
  

 
 

 
 





   (15)

The 12×4 received matrices  and  are given as 

in (1). Rows 9 to 12 are then conjugated and received 
matrices are remodeled as in (7) as follows.















































































































































(16)

where   and   have the same structure.  is given 

by:











        

 
 

 


        
 

 
 



        
 

 
 



        
 

 
 



(17)

In (16),  to  are given in (9) to (10), respectively, 

while  is given by

 











           
           
           
           



           (18)

Now, let the vectors  , for   ⋯, be 

constructed as in (12), then the interference-free system 
is given by















































































































      (19)

with the 8×4 matrices  and   being derived from   

and  by removing their zero rows.

3.3. Decoupling Symbols from Different Transmitters

In the following, we introduce two decoupling 
algorithms; the first is an interference cancellation 
receiver (ICR) based on the work given in [10] and [11], 
whereas the second algorithm is the linear zero-forcing 
(ZF), where we shed light on the simplicity of the 
channel inversion due to the structure of the resulting 
interference-free system.

3.3.1. Interference cancellation receiver
Let the interference-free system be represented by the 

following two equations.

 
 

 
 
 

 
                   (20)
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where in the case of   .

 



 



 




 





 




 





 




 





 

 

 
 

 (21)

In the case of   , the following holds.

 



 



 




 





 




 





 




 





 



 



 




 





 




 





 




 






  (22)

To decouple the vector ,  is decoupled 

similarly, we construct the following two equations.

∥∥



 ∥∥





∥∥



 ∥∥





(23)

∥∥



 ∥∥





∥∥



 ∥∥





(24)

where ∥∥ is the Frobenius norm of . Since the 

matrices in (20) are orthogonal, then subtracting (24) 
from (23) results in

                             (25)

Let





∥∥



∥∥

 




then





 



 




 





 




 




        (26)

Due the operation completeness of the matrices in 20, 
 is also orthogonal. Then, the estimate of  is given 
by

 





∥ ∥
∙ 









                     (27)

where ∙  denoting the vector demodulation operator.

3.3.2. Linear receiver
Let the system in (20) be reformulated as following.






 





 




 












 












 



             (28)

The estimate of the symbols from the transmitters are 
then obtained using the linear ZF detector as follows.




 





 


                      (29)

with the estimate of  is given by  . Due to 

the structure of the matrices  and , for   ⋯, 

the following holds.







 


 


                        (30)

where the matrices C, D and E are real-valued with C 
and D being diagonal with diagonal elements equal to 

∙










 and ∙











, respectively. 

Based on the block matrix inverse lemma,


 




 


  

  

∙



 


 

  
  

 

 (31)

Note that the matrix   is a scaled 
identity matrix, and hence calculating its inverse 
requires a single real division operation. The same holds 
for the inversion of the matrices C and D. As such, the 
complexity of the ZF detection reduces to simple real 
operations rather than fully computing the inverse of an 
8×8 complex-valued matrix.
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Ⅳ. Full-rate Quasi-orthogonal STBC on 

top of the x-channel with interference 

alignment system

To achieve higher diversity gains employing a single 
receive antenna, the conventional Alamouti code [7] 

with two transmit antennas is extended to the  
transmit antennas case with ≥ [13-15]. In the 
following, we introduce alignment design and receiver 
structures for the case of the extended Alamouti with 
    built on the system depicted in Figure 1.

4.1. Alignment design

In the current design, (2) and (3) still hold with the 
difference that the matrices   for   , A, B, G, 

and H are of size 4×4, and  and , for   , are 

respectively designed as

 












 

 
 



   


 

 
 




 

 
 



   


 

 
 





 











   


 

 
 




 

 
 




 

 
 




 

 
 



   



            (32)

Based on (1), the 6×4 received signal matrices at 
receiver 1 and 2 are respectively written as

  


 


 













   
   

  

 
  




 

  
  



   
   

           (33)

  


 


 













   
   


 

 
 




 

 
 



   
   

          (34)

where   
 

   and   
 

  ,

for   ⋯. Without loss of generality, we will focus 
on the decoding at receiver 1, where receiver 2 has the 
same decoding and performance due to system 
symmetry. The system in (33) is converted to the 

equivalent 24×1 vector , where the elements of  are 

filled in row-wise. That is, the first 6 elements of  are 

the first row of Y1, elements 7 to 12 are the second row 
of Y1. The conjugate operator is applied to rows 3 and 4 

before being inserted in .

The aligned interference at receiver 1, i.e.,   terms, is 

removed by performing simple addition and subtraction 

operations on the elements of . To this end, let us 

define the following 4×1 vectors 

 













 
 


  













 
 




 













 
 


  













 
 




       (35)

where the vectors   for   ⋯ are derived 

similarly from . Then,     with

 


















 




 



 


 



 
 





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 


















 




 



  

 


 
 




                (36)

Note that  and  , for   ⋯, have the same 

structure of the extended Alamouti matrices, which 
implies that they have the same properties. After aligned 
interference cancellation, the system  can be rewritten as




















 























 
























          (37)

where the noise is still white with a covariance matrix 

  ⊗diag , where ⊗ denotes the 

Kronecker product and   is the 4×4 identity matrix.

Before introducing the decoupling schemes, it is 
worthy to shed some light on the properties of the 
matrices given in (36), where these properties are 
essential in the design of the receiver. Let   for 

  ⋯ have the same structure of the matrices given 
in (36), then

1) The matrix 
  is real-valued, having the form














   
   
   
   

                    (38)

where 


 






 and   

 
 

;

2) These matrices are complete in terms of matrix 
addition, matrix subtraction, and matrix multiplication. 
That is, the Gram matrix of , for ≠, has the 

same structure explained in Property I. This can be 
simply proven using the block form of each matrix and 
perform each of the aforementioned operations.

3) The inverse of 
, given in Property I, has the 

following form














   
   
   
   

                    (39)

with 
 





  and  

4) The sum of Gramians of the matrices defined in 
(36) is given by







  













   
   
   
   

              (40)

with  





 and 


 







Having that been said about the properties of the 
matrices given in (36), we introduce the properties of 

the Gramian matrix  
 which will be used in 

the decoupling algorithms to be introduced in the 
sequel. The (8×8) Gramian matrix is given by:





 


 


                            (41)

where 

 





 , 






 , 






 . 

Note that the 4×4 matrices C and D have the structure 
explained in Property 4, while the 4×4 matrix E has the 
structure given in (36). As such, it comes with no 
surprise that the inverse of  has the same structure 

given (41), as will be explained later on.

4.2. Decoupling symbols from different transmitters

In the literature, several detection techniques have 
been proposed [10], which can be used to decouple the 
symbols from different receivers in (37). However, the 
effective channel matrix, or matrices, in (37) has a 
special structure that motivates the proposal of modified 
receivers that take into account the particular structure 
of these matrices. In the following, we introduce the 
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details of two receiver structures. 

4.2.1. Interference cancellation receiver
The idea of the ICR is based on the work introduced in 

[10] and [11], with the particularity that the system 
discussed here is not orthogonal. That is, the Gram 

matrix of   and   in (37) include both diagonal and 

skew-diagonal elements. As such, to decouple  the 

terms which include  should be canceled, where two 

IC stages are required rather than a single stage as in [10].
A) Cancellation of the diagonal elements: Starting 

with (38), we construct the following four vectors.







  





 













 for   ⋯
              (42)

Where based on property 1







   diag
where 

diag  is a skew-diagonal matrix. Subtracting the 

second equation, i.e.,    in (42), from the first one, 
and the fourth equation from the third one, cancels the 
diagonal elements of the channel matrix associated with 
, resulting in the following equations





 



 




 





 




 





∙diag
        (43)





 



 




 





 




 





∙diag
        (44)

where
       

 











 


  












 




  

B) Cancellation of the off-diagonal elements: Let (43) 
and (44) be divided by  and , respectively, then 

subtract the second equation from the first one, results in











































 





















               (45)

where 









 


. It is worth mentioning that 

based on Property II, the structure of 
   is defined 

by Property I.
Finally, the ZF decoder can be used to recover the 

transmitted vector  as following

  
  


 

  
  


 

           (46)

where the estimate  . Note that 
  

 

can be computed using Property III to reduce the 
computational complexity.

4.2.2 Linear zero-forcing receiver

The system modeled in (37) is first filtered using  
resulting in





 

 





 


 






 










            (47)

where 
  




, 

  




, 

  




, 

and the subscript f refers to filtered. As such, C and D 
have the structure given in Property 1, as well as 
satisfying Property 4, while E satisfies Property II. The 
transmitted vectors are recovered as follows




 







  



 







               (48)

To avoid the inversion of the 8×8 matrix , we 

introduce a cost-effective method to compute the inverse 
without explicitly inverting . Based on the block 

matrix inverse lemma, we make the following remarks:

1) C, D, , and    are 
real-valued and have the structure given in Property I, 
which implies that their inverses are simply computed 
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using Property III. The inverse of each of these matrices 
requires only three operations - two real multiplication 
and one division operations.

2)  , where  has the 
structure given in Property I. The same applies for 

. Using Property II,  can be obtained 
where 9 multiplication and 6 addition operations are 

required. Multiplying the result by  requires 4 
multiplication and 2 addition operations.

3)  is a Hermitian matrix, which implies that only 

the elements of an upper triangular matrix are computed.
Based on these remarks, it stems out that the 

computational complexity of the linear ZF detector is 
low due to the special structure of the effective channel 
matrices.

Ⅴ. Simulation Results and Discussion

In this section, we consider that each transmitter has 
full knowledge of only the channels coupling his 
transmit antennas with those of the two receivers. The 
elements in the channel matrices are independent and 
follow the circular-symmetric complex Gaussian 
distribution with mean and variance of zero and unity, 
respectively.

Figure 2 depicts the performance of OSTBC with 
code rate of 1/2 and   , referred to as , built on 

the system depicted in Figure1.

그림 2.     를 이용한 직교 STBC로 제안된 시스템의 
BER 성능
Fig. 2 BER performance of the proposed system with 
      employing orthogonal STBC

그림 3.     를 이용한 직교 STBC로 제안된 시스템의 

BER 성능

Fig. 3 BER performance of the proposed system with 
      employing orthogonal STBC

그림 4.     를 이용한 준직교 STBC로 제안된 시스템

의 BER 성능

Fig. 4 BER performance of the proposed system with 
      employing quasi-orthogonal STBC

 To hold a fair comparison between the proposed 
scheme and the LJJ scheme, we fix the spectral 
efficiency to 8/3 bits/s/Hz, implying that the modulation 
schemes used for and LJJ schemes are QPSK and 
BPSK, respectively. Starting with the ICR, due the 
increased dimensionality of the interference, this 
receiver fails to achieve the full diversity gain of 
   . Due to the special structure of the 

effective channel matrix, as explained in Section III, the 
simple linear ZF receiver achieves the full diversity 
order of     while attaining high gain in the 

bit error rate. At a target BER of , the proposed  
outperforms the conventional LJJ schemes by 14dB.

Figure 3 depicts the performance of OSTBC with 
code rate of 1/2 and   , referred to as , built on 
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the system depicted in Fig. 1. Again, for the same 
spectral efficiency of 8/3 bits/s/Hz, we employ QPSK 
and BPSK bit-to-symbol mapping for the proposed  

scheme and the conventional LJJ scheme, respectively. 
The ICR shows similar performance as in the case of the 
 scheme. The simple linear ZF receiver achieves the 

full diversity order of     with a gain of about 

16.5dB at a target BER of .
Finally, Figure 4 depicts the performance of the 

quasi-OSTBC with   , referred to as , built on 

the system depicted in Figure 1. Since the ICR employed 
a two-stage SIC scheme to cancel the diagonal and 
skew-diagonal interference, the performance is therefore 
even worsen as compared to that in the cases of the  

and . Despite the quasi-orthogonality of the effective 

channel matrices, the linear ZF receiver for the proposed 
 scheme achieves a superior performance of about 

10dB at a target BER of  as compared to the LJJ 
algorithm both employing QPSK modulation, resulting 
in an equal spectral efficiency of 8/3 bits/s/Hz. Our 
proposed scheme performs close to the optimum 
diversity order of    . The small degradation 

in the diversity order is due to the quasi-orthogonality of 
the effective channel matrices. A further research will be 
conducted to optimize the code matrices so as to achieve 
the full diversity order, or at least to reduce the 
degradation.

Ⅵ. Conclusion and Future work

In this paper, we introduced three schemes that 
achieve superior performances as compared to the 
conventional LJJ scheme in terms of BER and diversity 
order all at the same spectral efficiency. The first two 
proposed schemes, namely   and  , employ 
orthogonal STBCs to generate the code matrices, 
resulting in orthogonal effective matrices, hence 
achieving the optimum diversity order of 3 and 4, 
respectively. The third proposed scheme, referred to as 

, is superior to the conventional LJJ algorithm in 

terms of BER and diversity order, however, due to the 
quasi-orthogonality of the effective channel matrices, 
the diversity order of this scheme slightly lacks the 
optimum one. 

As a future work, we plan to investigate the 
implementation of several quasi-OSTBCs with    

built on the described system in this paper. Besides, a 
careful analysis of the diversity gain will be carried out 
and methods to achieve the optimum diversity order will 
be introduced.
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