• Title/Summary/Keyword: degenerate wave equation

Search Result 3, Processing Time 0.021 seconds

GLOBAL SOLUTIONS OF THE EXPONENTIAL WAVE EQUATION WITH SMALL INITIAL DATA

  • Huh, Hyungjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.811-821
    • /
    • 2013
  • We study the initial value problem of the exponential wave equation in $\math{R}^{n+1}$ for small initial data. We shows, in the case of $n=1$, the global existence of solution by applying the formulation of first order quasilinear hyperbolic system which is weakly linearly degenerate. When $n{\geq}2$, a vector field method is applied to show the stability of a trivial solution ${\phi}=0$.

ON EXISTENCE OF SOLUTIONS OF DEGENERATE WAVE EQUATIONS WITH NONLINEAR DAMPING TERMS

  • Park, Jong-Yeoul;Bae, Jeong-Ja
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.465-490
    • /
    • 1998
  • In this paper, we consider the existence and asymptotic behavior of solutions of the following problem: $u_{tt}$ -(t, x) - (∥∇u(t, x)∥(equation omitted) + ∥∇v(t, x) (equation omitted)$^{\gamma}$ $\Delta$u(t, x)+$\delta$$u_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$│u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], $v_{tt}$ (t, x) - (∥∇uu(t, x) (equation omitted) + ∥∇v(t, x) (equation omitted)sup ${\gamma}$/ $\Delta$v(t, x)+$\delta$$v_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$ u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], u(0, x) = $u_{0}$ (x), $u_{t}$ (0, x) = $u_1$(x), x$\in$$\Omega$, u(0, x) = $v_{0}$ (x), $v_{t}$ (0, x) = $v_1$(x), x$\in$$\Omega$, u│∂$\Omega$=v│∂$\Omega$=0 T > 0, q > 1, p $\geq$1, $\delta$ > 0, $\mu$ $\in$ R, ${\gamma}$ $\geq$ 1 and $\Delta$ is the Laplacian in $R^{N}$.X> N/.

  • PDF

Development of Weakly Nonlinear Wave Model and Its Numerical Simulation (약비선형 파랑 모형의 수립 및 수치모의)

  • 이정렬;박찬성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.181-189
    • /
    • 2000
  • A weakly nonlinear mild-slope equation has been derived directly from the continuity equation with the aid of the Galerkin's method. The equation is combined with the momentum equations defined at the mean water level. A single component model has also been obtained in terms of the surface displacement. The linearized form is completely identical with the time-dependent mild-slope equation proposed by Smith and Sprinks(1975). For the verification purposes of the present nonlinear model, the degenerate forms were compared with Airy(1845)'s non-dispersive nonlinear wave equation, classical Boussinesq equation, andsecond¬order permanent Stokes waves. In this study, the present nonlinear wave equations are discretized by the approximate factorization techniques so that a tridiagonal matrix solver is used for each direction. Through the comparison with physical experiments, nonlinear wave model capacity was examined and the overall agreement was obtained.

  • PDF