• Title/Summary/Keyword: deformation strength

Search Result 2,426, Processing Time 0.033 seconds

Engineering Characteristics of CLSM Using Bottom Ash and Eco-friendly Soil Binder (친환경 고결제와 저회를 활용한 유동성 복토재의 공학적특성)

  • Park, Giho;Kim, Taeyeon;Lee, Yongsoo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.23-29
    • /
    • 2019
  • In general, pipe laying works are performed by constructing underground facilities such as pipes and then refilling the rest of the area with sand or soil. However, there are many problems in the compaction process such as difficulties in tampering around the underground facility and low compaction efficiency. Such problems cause deformation and damage to the underground pipes during refilling work and ultimately cause road sinks. Construction methods using CLSM are one of the typical methods to solve these issues, and recently, studies on CLSM using coal ash, which has similar engineering properties as sand, have been actively performed to protect environment and recycle resources. While many studies have been conducted to recycle fly ash in many ways, the demand for recycling bottom ash is increasing as most of the bottom ash is not recycled and reclaimed at ash disposal sites. Therefore, in order to find bottom ash applications using eco-friendly soil binders that are environmentally beneficial and conform with CLSM standards, this study investigated flow characteristics and strength change characteristics of eco-friendly soil binders, weathered granite soil, a typical site-generated soil, bottom ash, and fly ash mixed soil and evaluated the soil pollution to present CLSM application methods using bottom ash.

Seismic Performance Enhancement of Exposed Column-base Plate Weak-axis Connections for Small-Sized Steel Buildings (소규모 철골조건축물을 위한 약축방향 노출형 주각부의 내진성능 향상)

  • You, Young-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • The purpose of this study is to enhance the seismic performance of exposed column-base plate weak-axis connections for small-sized steel buildings. According to the site inspection for the small-sized building construction, the arbitrary connection details in steel buildings have been applied at the job site, which is considered to be insufficient to guarantee structural safety and stability considering the increased seismic risk in Korea. Therefore, a series of test programs had been done to develop enhanced connection details in order to ensue the adequate seismic stability and safety of small-sized steel buildings. From the test results, It was found that the exposed column-base plate weak-axis connections commonly used in Korea shows very poor seismic behavior due to the "Rocking" phenomena caused by the residual plastic deformation of anchor bolts between anchor plate and concrete. A series of hysteretic tests for finding that solution were conducted to reduce the "Rocking" phenomena of the column-base plate connections, and local buckling of webs in H-column. Finally the enhanced stable seismic behavior was obtained by reinforcing at least 8 anchor bolts with good bonding strength and stiffeners to the webs in H-column.

The Effect of Carbide Precipitation on the High Temperature Deformation of Ni3Al and TiAl

  • Han, Chang-Suk;Kim, Jang-Woo;Kim, Young-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.147-154
    • /
    • 2009
  • The effect of carbon addition on the microstructures and mechanical properties of $Ni_3Al$ and TiAl intermetallic alloys have been characterized. It is shown that carbon is not only an efficient solid solution strengthener in $Ni_3Al$ and TiAl, it is also an efficient precipitation strengthener by fine dispersion of carbide. Transmission electron microscope investigation has been performed on the particle-dislocation interactions in $Ni_3Al$ and TiAl intermetallics containing various types of fine precipitates. In an $L1_2$-ordered $Ni_3Al$ alloy with 4 mol.% of chromium and 0.2~3.0 mol.% of carbon, fine octahedral precipitates of $M_{23}C_6$ type carbide, which has the cube-cube orientation relationship with the matrix, appear during aging. Typical Orowan loops are formed in $Ni_3Al$ containing fine dispersions of $M_{23}C_6$ particles. In the L10-ordered TiAl containing 0.1~2.0 mol.% carbon, TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the $L1_0$ matrix, appear in the matrix and preferentially at dislocations. Selected area electron diffraction (SAED) patterns analyses have shown that the needle-shaped precipitate is $Ti_3AlC$ of perovskite type. The orientation relationship between the $Ti_3AlC$ and the $L1_0$ matrix is found to be $(001)_{Ti3AlC}//(001)_{L10\;matrix}$ and $[010]_{Ti3AlC}//[010]_{L10\;matrix}$. By aging at higher temperatures or for longer period at 1073 K, plate-like precipitates of $Ti_2AlC$ with a hexagonal structure are formed on the {111} planes of the $L1_0$ matrix. The orientation relationship between the $(0001)_{Ti2AlC}//(111)_{L10\;matrix}$ is and $[1120]_{Ti2AlC}//[101]_{L10\;matrix}$. High temperature strength of TiAl increases appreciably by the precipitation of fine carbide. Dislocations bypass the carbide needles at further higher temperatures.

Behavioral Characteristics and Safety Management Plan for Fill Dam During Water Level Fluctuation Using Numerical Analysis (수치해석을 이용한 수위변동시 필댐의 거동특성 및 안전관리방안)

  • Jung, Heedon;Kim, Yongseong;Lee, Moojae;Lee, Seungjoo;Tamang, Bibek;Heo, Joon;Ahn, Sungsoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • In this study, the behavioral characteristics of the fill dam were analyzed during water level fluctuations through a numerical analysis model, and the reservoir safety management plan was prepared. The variation in plastic deviatoric strain, horizontal displacement, stress path, pore water pressure, etc., due to elevation of water level in the upper and lower sides of shell and core were analyzed using numerical analysis software, viz. GTS NX and LIQCA. The analysis results manifest that as the water level in the dam body increases rapidly, the pore water pressure and displacement also increase quickly. It was found that the elevation of the water level causes an increase in pore water pressure in the dam body as well as an increase in the saturation of the dam body and decreased effective stress. It is considered that this type of dam behavior can be the cause of the reduction of strength and stiffness of the dam. Also, it is assumed that the accumulated plastic deviatoric strain due to the deformation of the dam body caused by water infiltration causes an increase in displacement. Based on these experimental results and the results of analyses of the existing reservoir safety diagnosis techniques, an improvement plan for dam safety diagnosis and evaluation criteria was proposed, and these results can be used as primary data while revising dam safety diagnosis guidelines.

Ground Stability Evaluation of Volcanic Rock Area in Jeju according to the Loading Conditions (하중조건을 고려한 제주 화산암지대의 지반 안정성 평가)

  • Han, Heuisoo;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.199-209
    • /
    • 2021
  • This paper is written to evaluate the ground stability according to the construction of Jeju 2nd airport. Sumgol is the unique characteristics of Jeju soil, which is used to evaluate the ground stability of the airport. The research contents are as follows. 1) The geotechnical characteristics for Jeju 2nd airport was analyzed, and the Sumgol and geotechnical properties were calculated based on the existing geotechnical survey data. 2) The divided sections of Jeju 2nd airport were modeled to evaluate the ground stability after determining the section (runway and airport facilities) which have the different soil and loading properties. 3) The stability and deformation ranges of the airport ground were identified through numerical analysis. The entire airport was divided into three sections to analyze the stability of Jeju 2nd airport, and calculated the stresses, settlements, and strains of each section by computer numerical analysis modeling. For modeling, the ground and load conditions were examined, also pavement conditions for each airport ground section were examined. From the analysis results of each section according to the ground conditions, the vertical settlements were analyzed as 0.11~0.18 m and the sum of effective stress and pore water pressure were 92.75~445 kPa. These results were made by taking into account the Sumgol of the bottom ground without reinforcement, also the soil strength parameters of the airport ground were reduced for computer modeling, Therefore, if proper reinforcements are applied to the ground of Jeju 2nd airport, sufficient airport ground stability can be secured.

Laser Transmission Welding of Flexible Substrates and Evaluation of the Mechanical Properties (플렉서블 기판의 레이저 투과 용접 및 기계적 특성 평가)

  • Ko, Myeong-Jun;Sohn, Minjeong;Kim, Min-Su;Na, Jeehoo;Ju, Byeong-Kwon;Park, Young-Bae;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2022
  • In order to improve the mechanical reliability of next-generation electronic devices including flexible, wearable devices, a high level of mechanical reliability is required at various flexible joints. Organic adhesive materials such as epoxy for bonding existing polymer substrates inevitably have an increase in the thickness of the joint and involve problems of thermodynamic damage due to repeated deformation and high temperature hardening. Therefore, it is required to develop a low-temperature bonding process to minimize the thickness of the joint and prevent thermal damage for flexible bonding. This study developed flexible laser transmission welding (f-LTW) that allows bonding of flexible substrates with flexibility, robustness, and low thermal damage. Carbon nanotube (CNT) is thin-film coated on a flexible substrate to reduce the thickness of the joint, and a local melt bonding process on the surface of a polymer substrate by heating a CNT dispersion beam laser has been developed. The laser process conditions were constructed to minimize the thermal damage of the substrate and the mechanism of forming a CNT junction with the polymer substrate. In addition, lap shear adhesion test, peel test, and repeated bending experiment were conducted to evaluate the strength and flexibility of the flexible bonding joint.

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

A Study on Stress-Strain Behaviour of Geotube Structure Filled with Silty Sand Under Low Confining Pressure by Triaxial Compression Test (실트질 모래가 충진된 지오튜브 구조체의 저 등방조건에서 삼축압축시험에 의한 응력-변위 거동 연구)

  • Hyeong-Joo, Kim;Tae-Woong, Park;Ki-Hong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.69-78
    • /
    • 2022
  • Geotextile tubes are widely used to prevent erosion in coastal areas and to replace the backfill for shore slopes in the reclamation of land using dredged soil. In this study, The triaxial confining pressures were chosen as 10kPa, 50kPa, or 100kPa for the specimens reinforced with geotextile considering the condition in the site. The strain behavior under various compressive stresses was then identified. At strains 0% to 7%, the stress-strain behavior was the same due to the effect of initial strain hardening, in which the force was exerted according to the relaxation of the geotextile regardless of the confining pressure (≤100kPa). At strains of 7% or more, the specimen with the small confining pressure had smaller deformation under load, which increases the tensile resistance provided by the reinforcing geotextile. Brittle fracture was then observed due to strain softening and the deviator stress abruptly decreased. This is different from the phenomenon in which the shear strength increases as the confining pressure increases in general triaxial compression tests. In the geoxtile-confined tests, geotextiles are primarily subjected to tensile displacement. Thereafter, the modulus of elasticity increases rapidly, which exhibits the elastic behavior of the geotextile.

Experimental Evaluation of the Effect of Fine Contents on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes (하수관 손상으로 인한 지하공동 및 지반함몰 발생에 대해 세립분 함량이 미치는 영향의 실험적 평가)

  • Kwak, Tae-Young;Lee, Seung-Hwan;Chung, Choong-Ki;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.93-105
    • /
    • 2021
  • In this study, we evaluated the effect of soil fine contents on the formation of underground cavities and ground cave-ins induced by damaged sewer pipes. Simulating the domestic rainfall conditions and ground conditions, model tests were performed under three different fine particle contents conditions (7.5%, 15%, and 25%). By repeating the groundwater supply and drainage twice, ground settlement and the amount of discharged soil were obtained. Also, digital images were taken at regular time intervals during the model tests, and internal displacement and deformation were measured using PIV technique. As the cycles were repeated, the soil with high fine content showed greater resistance to the formation of underground cavities. The ground cave-ins, identified by the collapse of the surface, occurred only when the fine particle content was 15%. It is presumed to be due to the suffusion phenomenon; further study was needed to investigate the effect of fine particle contents on the suffusion phenomenon and associated changes of soil strength.