Browse > Article

The Effect of Carbide Precipitation on the High Temperature Deformation of Ni3Al and TiAl  

Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
Kim, Jang-Woo (Dept. of Digital Display Engineering, Hoseo University)
Kim, Young-Woo (Research Center for Convergence Technology, Hoseo University)
Publication Information
Korean Journal of Metals and Materials / v.47, no.3, 2009 , pp. 147-154 More about this Journal
Abstract
The effect of carbon addition on the microstructures and mechanical properties of $Ni_3Al$ and TiAl intermetallic alloys have been characterized. It is shown that carbon is not only an efficient solid solution strengthener in $Ni_3Al$ and TiAl, it is also an efficient precipitation strengthener by fine dispersion of carbide. Transmission electron microscope investigation has been performed on the particle-dislocation interactions in $Ni_3Al$ and TiAl intermetallics containing various types of fine precipitates. In an $L1_2$-ordered $Ni_3Al$ alloy with 4 mol.% of chromium and 0.2~3.0 mol.% of carbon, fine octahedral precipitates of $M_{23}C_6$ type carbide, which has the cube-cube orientation relationship with the matrix, appear during aging. Typical Orowan loops are formed in $Ni_3Al$ containing fine dispersions of $M_{23}C_6$ particles. In the L10-ordered TiAl containing 0.1~2.0 mol.% carbon, TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the $L1_0$ matrix, appear in the matrix and preferentially at dislocations. Selected area electron diffraction (SAED) patterns analyses have shown that the needle-shaped precipitate is $Ti_3AlC$ of perovskite type. The orientation relationship between the $Ti_3AlC$ and the $L1_0$ matrix is found to be $(001)_{Ti3AlC}//(001)_{L10\;matrix}$ and $[010]_{Ti3AlC}//[010]_{L10\;matrix}$. By aging at higher temperatures or for longer period at 1073 K, plate-like precipitates of $Ti_2AlC$ with a hexagonal structure are formed on the {111} planes of the $L1_0$ matrix. The orientation relationship between the $(0001)_{Ti2AlC}//(111)_{L10\;matrix}$ is and $[1120]_{Ti2AlC}//[101]_{L10\;matrix}$. High temperature strength of TiAl increases appreciably by the precipitation of fine carbide. Dislocations bypass the carbide needles at further higher temperatures.
Keywords
$Ni_3Al$; TiAl; $M_{23}C_6$ carbide; perovskite carbide; age-hardening; precipitates; microstructure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Guo Jianting, D. Ranucci and F. Gherarde, Met. Trans. 15A, 1331 (1984)
2 J. B. McAndrew and H. D. Kessler, Trans. AZME 206, 1348 (1956)
3 H. A. Lipsitt, High Temperature Ordered Zntermetallic Alloys, eds C. C. Koch, C. T. Liu and N. S. Stoloff, MRS Symp. Proc., Pittsburgh, PA, USA, 351 (1984)
4 Y. W. Kim and F. H. Froes, High Temperature Aiuminides and Zntermetallics, eds S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler. TMS, Warrendale, PA, USA, 465 (1990)
5 L. J. Huetter and H. H. Stadelmaier, Acta Metall. 6, 367 (1958)   DOI   ScienceOn
6 A. Gabriel, C. Chatillon and I. Ansara, High Temp. Sci. 25, 17 (1988)
7 T. Khan, P. Caron and S. Naka, High Temperature Aluminides and Intermetallics, Ed. by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler, TMS, Warrendahle, 219 (1990)
8 D. V. Edmonds and R. W. K. Honeycombe, Precipitation Processes in Solids, ed. K. C. Russel and H. I. Aaronson, AIME, 121 (1978)
9 S. C. Huang, Structural Zntermetallics, eds R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Murade and M. V. Nathal, TMS, Warrendale, PA, USA, 299 (1993)
10 H. J. Goldschmidt, Interstitial Alloys, Butterworth, London, 187 (1967)
11 S. H. Kim, M. C. Kim, M. H. Oh and D. M. Wee, J. Kor. Inst. Met. & Mater. 39, 731 (2001)
12 C. S. Han, Met. Mater.-Int. 12, 467 (2006)   DOI   ScienceOn
13 M. V. Nathal, Ordered Intermetallics-Physical Metallurgy and Mechanical Behaviour, Ed. by C. T. Liu, R. W. Cahn and G. Sauthoff, NATO ASI Series E, Kluwer Academic Publ., Dordrecht, 213, 541 (1992)
14 C. S. Han, Met. Mater.-Int. 13, 31 (2007)   DOI   ScienceOn
15 G. Chen, W. Zhang, Y. Wang, J. Wang, Z. Sun, Y. Wu and L. Zhou, Structural Zntermetallics, eds R. Darolia et al., TMS, Warrendale, PA, USA, 319 (1993)
16 O. Noguchi, Y. Oya and T. Suzuki, 'The effect of nonstoichiometry on the positive temperature dependence of Strength of $Ni_3$Al and $Ni_3$Ga', Metall. Trans. 12A, 1647 (1981)
17 M. F. Ashby and L. M. Brow, Phil. Mug. 8, 1083 (1963)   DOI
18 M. A. Morris, Phil. Mug. A 66, 129 (1994)   DOI   ScienceOn
19 J. M. Oblak, J. E. Doherty, A. F. Giamei and B. H. Kear, Met. Trans. 5, 1252 (1974)   DOI
20 R. J. Van Thyne and H. D. Kessler, Trans. AZME 196, 193 (1954)
21 Y. G. Zhang, Q. Xu and C. Q. Chen, Zntermetallic Compound, ed. O. Izumi, JIM Symp. Proc. Japan Inst. Metals, Sendai, Japan, 39 (1991)
22 J. F. Radavick and W. H. Couts, Rev. High Temp. Mater 1, 55 (1984)