• 제목/요약/키워드: deformation rigidity

검색결과 139건 처리시간 0.03초

모형실험을 통한 말뚝의 p-y 곡선에 관한 연구 (A Study on the p-y Curves by Small-Scale Model Tests)

  • 김태식;정상섬;김영호
    • 대한토목학회논문집
    • /
    • 제28권1C호
    • /
    • pp.41-51
    • /
    • 2008
  • 본 논문은 말뚝 및 기초지반의 강성이 수평재하말뚝의 거동에 미치는 영향을 알아보고자 주문진 표준사와 김해점토를 기초지반으로 수평재하말뚝에 대한 실내실험을 실시하였다. 또한 실험 결과를 바탕으로 영향계수를 정량화 할 수 있는 경험식을 산정하였다. 말뚝과 지반의 강성을 고려하기 위하여 길이가 다른 3개의 알루미늄 모형말뚝을 제작하였으며 이를 사질토와 점성토 지반에 설치한 후 기초지반의 상대밀도(사질토 지반) 및 비배수전단강도(점성토 지반)를 변화시켜가며 수평재하 실내실험을 수행하였다. 실험을 통하여 산정된 p-y 곡선의 초기기울기는 사질토와 점성토 지반 모두에서 깊이와 말뚝-지반의 강성에 비례하였으나 점성토 지반의 경우 사질토 지반에 비하여 깊이에 따른 초기기울기의 증가율이 작은 경향을 나타내었다. 또한 극한 지반반력의 경우 모든 지반 조건에서 수평지반반력계수와 유사하게 깊이와 지반강성에 비례하여 증가하였으나 말뚝 강성에 대한 영향은 적게 나타났다. 이와 같은 특성을 고려하여 본 논문에서는 p-y 곡선의 초기기울기 산정 식을 실험결과와 가장 유사한 형태를 지니는 쌍곡선으로 지반 조건에 따라 제시하였으며 제안된 식을 기존의 연구 및 현장재하시험과 비교하여 제안 식의 적용성을 검증하였다.

Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity

  • Koubova, Lenka;Janas, Petr;Markopoulos, Alexandros;Krejsa, Martin
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.755-765
    • /
    • 2019
  • This study examined geometric and physical nonlinear analyses of beams and arches specifically from rolled profiles used in mining and underground constructions. These profiles possess the ability to create plastic hinges owing to their robustness. It was assumed that displacements in beams and arches fabricated from these profiles were comparable with the size of the structure. It also considered changes in the shape of a rod cross-section and the nonlinearities of the structure. The analyses were based on virtual unit moments, effective flexural rigidity of used open sections, and a secant method. The use of the approach led to a solution for the "after-critical" condition in which deformation increased with decreases in loads. The solution was derived for static determinate beams and static indeterminate arches. The results were compared with results obtained in other experimental tests and methods.

Seismic demand assessment of semi-rigid steel frames at different performance points

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datta, Tushar K.
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.713-730
    • /
    • 2021
  • The seismic performance of rigid steel frames is widely investigated, but that of semi-rigid (SR) steel frames are not studied extensively, especially for near-field earthquakes. In this paper, the performances of five and ten-story steel SR frames having different degrees of semi-rigidity are evaluated at four performance points in the four different deformation states, namely, the elastic, elasto-plastic, plastic, and near collapse states. The performances of the SR frames are measured by the response parameters including the maximum values of the top floor displacement, base shear, inter-story drift ratio, number of plastic hinges, and SRSS of plastic hinge rotations. These response parameters are obtained by the capacity spectrum method (CSM) using pushover analysis. The validity of the response parameters determined by the CSM is evaluated by the results of the nonlinear time history analysis (NLTHA) for both near and far-field earthquakes at different PGA levels, which are consistent with the performance points. Results of the study show that the plastic hinges of SR frame significantly increase in the range of plastic to near-collapse states for both near and far-field earthquakes. The effect of the degree of semi-rigidity is pronounced only at higher degrees of semi-rigidity. The predictions of the CSM are fairly well in comparison to the NLTHA.

Computational design of an automotive twist beam

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.215-225
    • /
    • 2016
  • In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive twist beam undergoing linear elastic deformation (Hooke's law). Indeed, for the design of this automotive part, there are some criteria to be considered as the rigidity (stiffness) and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI) algorithm coupling with a radial basis function (RBF) metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form deformation (FFD) technique for the generation of the 3D shapes of the automotive part studied during the optimization process.

Studies into a high performance composite connection for high-rise buildings

  • Lou, G.B.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.789-809
    • /
    • 2015
  • This paper presents experimental and numerical studies into the structural behavior of a high performance corbel type composite connection adopted in Raffles City of Hangzhou, China. Physical tests under both monotonic and quasi-static cyclic loads were conducted to investigate the load carrying capacities and deformation characteristics of this new type of composite connection. A variety of structural responses are examined in detail, including load-deformation characteristics, the development of sectional direct and shear strains, and the history of cumulative plastic deformation and energy. A three-dimensional finite element model built up with solid elements was also proposed for the verification against test results. The studies demonstrate the high rigidity, strength and rotation capacities of the corbel type composite connections, and give detailed structural understanding for engineering design and practice. Structural engineers are encouraged to adopt the proposed corbel type composite connections in mega high-rise buildings to achieve an economical and buildable and architectural friendly engineering solution.

이동 최소 자승법 기반의 빠르고 강체성이 유지되는 3차원 형상 변형 기법 (Fast and Rigid 3D Shape Deformation Based on Moving Least Squares)

  • 이정;김창헌
    • 정보처리학회논문지A
    • /
    • 제16A권2호
    • /
    • pp.61-68
    • /
    • 2009
  • 본 논문에서는 이동 최소 자승법을 기반으로 이미지에 나타나는 객체의 강체 변형을 근사함으로써 자연스러운 변형 결과를 획득할 수 있는 빠른 속도의 3차원 형상 변형 기법을 제안한다. 본 연구에서는 이동 최소 자승법을 강체변형에 맞게 수정하여 각각의 점들이 이동되는 최적의 위치를 계산하는데 소요되는 계산량을 감소시키면서 변형된 결과의 강체성도 그대로 유지하고 있다. 복잡한 기하 형상이라도 점이나 타원형 핸들의 조작을 통해 쉽고 직관적이며 상호작용이 가능한 속도로 변형이 가능하다.

초기 처짐 영향을 고려한 알루미늄 합금 사각형 판의 좌굴 후 거동 (Post-buckling Behaviour of Aluminium Alloys Rectangular Plate Considering the Initial Deflection Effect)

  • 오영철;강병모;고재용
    • 해양환경안전학회지
    • /
    • 제20권6호
    • /
    • pp.738-745
    • /
    • 2014
  • 본 논문에서는 탄소성 영역 내 패치 로딩 크기에 따른 알루미늄 합금 사각형 판의 초기 처짐 영향을 수치해석방법으로 이용한 탄성 및 탄소성 대변형 시리즈 해석을 수행하였다. 주변 지지조건은 단순지지로 가정하고 초기 처짐 크기(w/t), 종횡비(a/b), 세장비(b/t)를 고려하여 알루미늄 합금 A6082-T6 사각형 판의 임계 탄성 좌굴하중과 좌굴 후 거동을 검토하였다. 탄성 및 탄소성 대변형 시리즈 해석은 상용프로그램을 사용하였다. 초기 처짐 크기가 작을 경우 하중증가와 함께 면내 강성이 처음부터 감소하며 크기가 커질수록 훨씬 두드러지게 발생한다. 종횡비가 커질수록 초기항복강도는 점차 감소하며 판 두께가 두꺼울수록 패치 로딩 크기(l/b) 0.5 이후 초기 항복강도 감소비율은 얇은 두께보다 더 크게 발생한다.

사각 주름판의 굽힘강성 및 굽힘해석 (Bending Analysis and Flexural Rigidity of Rectangular Corrugated Plates)

  • 정강;김영완
    • 동력기계공학회지
    • /
    • 제16권6호
    • /
    • pp.38-44
    • /
    • 2012
  • In this paper, the bending characteristics of the corrugated plates is analyzed. The trapezoidally, triangularlly and sinusoidally corrugated plates are considered. The corrugated plate is treated as an orthotropic plate that has different flexural properties in two perpendicular directions. The equivalent bending and twisting rigidities for the equivalent orthotropic plates are derived. The equivalent flexural rigidities are estimated under the following postulations: (1) The angle of continuously corrugated plate is not changed after the deformation. (2) When the pure bending moment is applied in corrugated direction of the plate, the its plane is in pure bending. Several numerical examples are analyzed with the proposed method and compared with published results.

능직 CFRP/GFRP 적층하이브리드 복합재의 Mode I 파괴인성 평가 (The Evaluation of Fracture Toughness on Mode I for Twill CFRP/GFRP Laminated Hybrid Composites)

  • 노영우;강지웅
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.9-14
    • /
    • 2020
  • In order to realize high strength and light weight for various industrial facilities and structural materials, various new materials are applied to product design. Among them, CFRP has excellent specific strength and non-rigidity, and the scope of use is expanding throughout the industry, such as mobility products and building materials. GFRP is cheaper than CFRP, and has excellent specific strength and non-rigidity, and has excellent heat resistance and sound insulation, so it has been adopted as a core material for flooring and interior flooring. CFRP of twill weave structure has better resistance to deformation of fiber than plain weave structure, so the outermost layer is applied as twill weave structure in product design. After fabrication with DCB specimens, Mode I fracture toughness was evaluated according to the crack length. As the crack length increases, the energy release rate and stress intensity factor values tended to decrease overall.

Organ Shape Modeling Based on the Laplacian Deformation Framework for Surface-Based Morphometry Studies

  • Kim, Jae-Il;Park, Jin-Ah
    • Journal of Computing Science and Engineering
    • /
    • 제6권3호
    • /
    • pp.219-226
    • /
    • 2012
  • Recently, shape analysis of human organs has achieved much attention, owing to its potential to localize structural abnormalities. For a group-wise shape analysis, it is important to accurately restore the shape of a target structure in each subject and to build the inter-subject shape correspondences. To accomplish this, we propose a shape modeling method based on the Laplacian deformation framework. We deform a template model of a target structure in the segmented images while restoring subject-specific shape features by using Laplacian surface representation. In order to build the inter-subject shape correspondences, we implemented the progressive weighting scheme for adaptively controlling the rigidity parameter of the deformable model. This weighting scheme helps to preserve the relative distance between each point in the template model as much as possible during model deformation. This area-preserving deformation allows each point of the template model to be located at an anatomically consistent position in the target structure. Another advantage of our method is its application to human organs of non-spherical topology. We present the experiments for evaluating the robustness of shape modeling against large variations in shape and size with the synthetic sets of the second cervical vertebrae (C2), which has a complex shape with holes.