Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity |
Koubova, Lenka
(Department of Structural Mechanics, Faculty of Civil Engineering, VSB - Technical University of Ostrava)
Janas, Petr (Department of Structural Mechanics, Faculty of Civil Engineering, VSB - Technical University of Ostrava) Markopoulos, Alexandros (Department of Applied Mathematics, IT4Innovations, VSB - Technical University of Ostrava) Krejsa, Martin (Department of Structural Mechanics, Faculty of Civil Engineering, VSB - Technical University of Ostrava) |
1 | Bradford, M.A. (2006), "In-plane nonlinear behaviour of circular pinned arches with elastic restraints under thermal loading", Int. J. Struct. Stabil. Dyn., 6(2), 163-177. https://doi.org/10.1142/S0219455406001897 DOI |
2 | Grochol, P. (1996), Assessment of the functional properties of the profiles K-21, K-24 and P-28, B 00575, Scientific Research Coal Institute, a.s. Ostrava-Radvanice, Czech Republic. |
3 | Heidarpour, A., Abdullah, A.A. and Bradford, M.A. (2010), "Nonlinear inelastic analysis of steel arches at elevated temperatures", J. Constr. Res., 66, 512-519. https://doi.org/10.1016/j.jcsr.2009.10.003 DOI |
4 | Janas, P. (2008), "The steel arc reinforcement in the long mining works, current options its assessment and dimensioning", Proceedings of the traditional international geomechanical and geophysical scientific conference, Ostravice, Czech Republic. |
5 | Janas, P., Kolos, I. and Fojtik, R. (2014), "Classification of steel mine support sections as per EC3 classification", Adv. Mater. Res., 969, 63-66. https://doi.org/10.4028/www.scientific.net/AMR.969.63 DOI |
6 | Janas, P., Koubova, L. and Krejsa, M. (2016), "Load carrying capacity of steel arch reinforcement taking into account the geometrical and physical nonlinearity", Appl. Mech. Mater., 821, 709-716. https://doi.org/10.4028/www.scientific.net/AMM.821.709 DOI |
7 | Janas, P., Janas, K., Koubova, L. and Krejsa, M. (2017), "Modelling of Closed Steel Supports for Underground and Mining Works", Key Eng. Mater., 754, 313-316. https://doi.org/10.4028/www.scientific.net/KEM.754.313 DOI |
8 | Kala, Z., Kalina, M. and Frantik, P. (2015), "Buckling and post-buckling of the von mises planar truss", AIP Conference Proceedings, 1648, 1-4. |
9 | Kolar, V. (1985), Nonlinear Mechanics, House Technology CSVTS, Ostrava, Czech Republic. |
10 | Koubova, L., Janas, P. and Krejsa, M. (2016), "Nonlinear solution of steel arch supports", Key Eng. Mater., 713, 119-122. https://doi.org/10.4028/www.scientific.net/KEM.713.119 DOI |
11 | Kralik, J. (2014), "A RSM approximation in probabilistic nonlinear analysis of fire resistance of technology support structures", Adv. Mater. Res., 969, 1-8. https://doi.org/10.4028/www.scientific.net/AMR.969.1 DOI |
12 | Krejsa, M., Janas, P., Yilmaz, I., Marschalko, M. and Boucha, T. (2013), "The use of the direct optimized probabilistic calculation method in design of bolt reinforcement for underground and mining workings", Sci. World J., 2013. http://dx.doi.org/10.1155/2013/267593 |
13 | Ma, J., Liu, Y., Gao, Q. and Hou, K. (2015), "Investigating the hysteretic behaviour of concrete-filled steel tube arch by using a fiber beam element", Math. Probl. Eng., 15, 1-7. http://dx.doi.org/10.1155/2015/409530 |
14 | Markopoulos, A., Janas, P. and Podesva, J. (2010), "Alternative flexural rigidity of the profile P-28 with axial force", Proceedings of International Conference Modelling in Mechanics, 2010, 1-7. |
15 | Pi, Y.L. and Bradford, M. (2013), "Nonlinear analysis and buckling of shallow arches with unequal rotational end restraints", Eng. Struct., 46, 615-630. https://doi.org/10.1016/j.engstruct.2012.08.008 DOI |
16 | Mattiasson, K. (1981), "Numerical results from large deflection beam as frame problems analyzed by means of elliptic integral", Int. J. Numer. Method. Eng., 17(1), 145-153. DOI |
17 | Paczesniowski, K. (2012), Test of mining steel arch support type SP 16/4, BL-2/12-50, Group of the testing and calibration laboratories of the mining general institut (GIG), Katowice, Poland. |
18 | Pi, Y.L. and Bradford, M. (2010), "Effects of prebuckling analyses on determining buckling loads of pin-ended circular arches", Mech. Res. Commun., 37, 545-553. https://doi.org/10.1016/j.mechrescom.2010.07.016 DOI |
19 | Pi, Y.L. and Trahair, N. (2000), "Inelastic lateral buckling strength and design of steel arches", Eng. Struct., 22, 993-1005. https://doi.org/10.1016/S0141-0296(99)00032-2 DOI |
20 | Pi, Y.L., Bradford, M. and Uy, B. (2002), "In-plane stability of arches", Int. J. Solids Struct., 39, 105-125. https://doi.org/10.1016/S0020-7683(01)00209-8 DOI |
21 | Randyskova, L. and Janas, P. (2010), "Bending test-based determination of effective cross-section stiffness", Transactions of the VSB-Technical University of Ostrava, Civil Engineering Series, 10(1), 1-8. |
22 | Xu, T., Xiang, T., Zhao, R. and Zhan, Y. (2010), "Nonlinear finite element analysis of circular concrete-filled steel tube structures", Struct. Eng. Mech., Int. J., 35(3), 315-333. https://doi.org/10.12989/sem.2010.35.3.315 DOI |
23 | Randyskova, L. and Janas, P. (2011), "Nonlinear solution of steel arch reinforcement with influence of passive forces", Transactions of the VSB-Technical University of Ostrava, Civil Engineering Series, 11(1), 1-6. |
24 | Starossek, U., Falah, N. and Lhning, T. (2010), "Numerical analyses of the force transfer in concrete-filled steel tube", Struct. Eng. Mech., Int. J., 35(2), 241-256. https://doi.org/10.12989/sem.2010.35.2.241 DOI |