DOI QR코드

DOI QR Code

Fast and Rigid 3D Shape Deformation Based on Moving Least Squares

이동 최소 자승법 기반의 빠르고 강체성이 유지되는 3차원 형상 변형 기법

  • 이정 (고려대학교 BK21 산업단) ;
  • 김창헌 (고려대학교 정보통신공학부)
  • Published : 2009.04.30

Abstract

We present a fast 3D shape deformation method that achieves smoothly deformed result by approximating a rigid transformation based on moving least squares (MLS). Our modified MLS formulation reduces the computation cost for computing the optimal transformation of each point and still keeps the rigidity of the deformed results. Even complex geometric shapes are easily, intuitively, and interactively deformed by manipulating point and ellipsoidal handles.

본 논문에서는 이동 최소 자승법을 기반으로 이미지에 나타나는 객체의 강체 변형을 근사함으로써 자연스러운 변형 결과를 획득할 수 있는 빠른 속도의 3차원 형상 변형 기법을 제안한다. 본 연구에서는 이동 최소 자승법을 강체변형에 맞게 수정하여 각각의 점들이 이동되는 최적의 위치를 계산하는데 소요되는 계산량을 감소시키면서 변형된 결과의 강체성도 그대로 유지하고 있다. 복잡한 기하 형상이라도 점이나 타원형 핸들의 조작을 통해 쉽고 직관적이며 상호작용이 가능한 속도로 변형이 가능하다.

Keywords

References

  1. Alexa, M., 'Differential Coordinates for Local Mesh Morphing and Deformation,' The Visual Computer 19, 2, 105-114, 2003 https://doi.org/10.1007/s00371-002-0180-0106
  2. Alexa, M., Cohen-Or, D., and Levin, D., 'As-rigid-aspossible Shape Interpolation,' In Proceedings of SIGGRAPH'00, 157-164, 2000 https://doi.org/10.1145/344779.344859
  3. Angelidis, A., Cani, M.-P., Wyvill, G., and King, S. 'Swirling-Sweepers: Constant Volume Modeling, In Computer Graphics and Applications,' 12th Pacific Conference on (PG'04), 10-15, 2004 https://doi.org/10.1109/PCCGA.2004.1348329
  4. Botsch, M. and Kobbelt, L. 'Multiresolution Surface Representation Based on Displacement Volumes,' Computer Graphics Forum 22, 3, 483-491, 2003 https://doi.org/10.1111/1467-8659.00696
  5. Botsch, M. and Kobbelt, L. 'Real-time Shape Editing Using Radial Basis Function,' Computer Graphics Forum 24, 3, 611-621, 2005 https://doi.org/10.1111/j.1467-8659.2005.00886.x
  6. Funck,W., Theisel,H., and Seidel,H.-P. 'Vector Field Based Shape Deformations,' ACM Transaction on Graphics 25, 3, 1118-1125, 2006 https://doi.org/10.1145/1141911.1142002
  7. Horn, B.K.P., Hilen, H.M., and Negahdaripour, S. 'Closed Form Solution of Absolute Orientation Using Orthonormal Matrices,' Journal of the Optical Society of America. A, Optics and Image Science 5, 7, 1127-1135, 1988 https://doi.org/10.1364/JOSAA.5.001127
  8. garashi, T., Moscovich, T., and Hughes, J. F. 'As-rigid-aspossible Shape Manipulation,' ACM Transaction on Graphics 24, 3, 1134-1141, 2005 https://doi.org/10.1145/1073204.1073323
  9. Kobbelt, L., Compagna, S., Vorsatz, J., and Seidel, H.-P. 'Interactive Multi-resolution Modeling on Arbitrary Meshes,' In Proceedings of ACM SIGGRAPH '98, 105-114, 1998 https://doi.org/10.1145/280814.280831
  10. Lewis, J.P., Cordner, M., and Fong, N. 'Pose Space Deformation: a Unified Approach to Shape Interpolation and Skeleton-driven Deformation,' In Proceedings of ACM SIGGRAPH '00, 165-172, 2000 https://doi.org/10.1145/344779.344862
  11. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rossl, C., and Seidel, H.-P. 'Differential Coordinates for Interactive Mesh Editing,' In Proceedings of Shape Modeling International, 181-190, 2004 https://doi.org/10.1109/SMI.2004.30
  12. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 'Linear Rotation-invariant Coordinates for Meshes,' ACM Transaction on Graphics 24, 3, 479-487, 2005 https://doi.org/10.1145/1073204.1073217
  13. Llamas, I., Kim, B., Gargus, J., Rossignac, J., and Shaw, C. 'Twister: a Space-warp Operator for the Two-handed Editing of 3D Shapes,' ACM Transaction on Graphics 22, 3, 663-668, 2003 https://doi.org/10.1145/1201775.882323
  14. MacCracken, R. and Joy, K. 'Free-form Deformations with Lattices of Arbitrary Topology,' In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM Press, New York, 181-188, 1996 https://doi.org/10.1145/237170.237247
  15. Sheffer, A. and Kraevoy, V. 'Pyramid Coordinates for Morphing and Deformation,' In Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT '04), 68-75, 2004 https://doi.org/10.1109/3DPVT.2004.99
  16. Schaefer, S., McPhail, T., and Warren, J. 'Image Deformation Using Moving Least Squares,' ACM Transaction on Graphics 25, 3, 533-540, 2006 https://doi.org/10.1145/1179352.1141920
  17. Sederberg, T. and Parry, S. 'Free-form Deformation of Solid Geometric Models,' In Proceedings of ACM SIGGRAPH '86, 151-160, 1986 https://doi.org/10.1145/15922.15903
  18. Shi, L., Yu, Y., Bell, N., and Feng, W.-W. 'A Fast Multigrid Algorithm for Mesh Deformation,' In ACM Transaction on Graphics 24, 3, 1108-1117, 2006 https://doi.org/10.1145/1179352.1142001
  19. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rossl, C., and Seidel, H.-P. 'Laplacian Surface Editing,' In Proceedings of Eurographics Symposium on Geometry Processing, 179-188, 2004 https://doi.org/10.1145/1057432.1057456
  20. Yoshizawa, S., Belyaev, A.G., and Seidel, H.-P. 'Free-form Skeleton-driven Mesh Deformations,' In Proceedings of the 8th ACM Symposium on Solid Modeling and Applications 2003, 247-253, 2003 https://doi.org/10.1145/781606.781643
  21. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Gui, B., and Shum, H.-Y. 'Mesh Editing with Poisson-based Gradient Field Manipulation,' ACM Transaction on Graphics 23, 3, 641-648, 2004 https://doi.org/10.1145/1186562.1015774
  22. Zhou, K., Huang. J., Snyder, J., Liu, X., Bao, H., Gui, B., and Shum, H.Y. 'Large Mesh Deformation Using the Volumetric Graph Laplacian,' ACM Transaction on Graphics 24, 3, 496-503, 2005 https://doi.org/10.1145/1073204.1073219
  23. Zhu, Y. and Gortler, S.J. '3D Deformation Using Moving Least Squares,' Harvard Computer Science Technical Report: TR-10-07, 2007
  24. Zorin, D., Schroder, P., and Sweldens, W. 'Interactive Multiresolution Mesh Editing,' In Proceedings of ACM SIGGRAPH 1997, 259-269, 1997 https://doi.org/10.1145/258734.258863