• Title/Summary/Keyword: deformation path

Search Result 171, Processing Time 0.021 seconds

Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path (비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상)

  • Jeong, Hyun Gi;Jang, Eun Hyuk;Song, Youn Jun;Chung, Wan Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

Simulation of Texture Evolution and Anisotropy Behavior in Dual Phase Steels during Deep Drawing Process (DP강의 디프드로잉 시 집합조직 발달과 이방성 거동 시뮬레이션)

  • Song, Young-Sik;Kim, Dae-Wan;Yang, Hoe-Seok;Han, Sung-Ho;Chin, Kwang-Gun;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.274-282
    • /
    • 2009
  • To investigate the evolution of deformation texture in dual phase (DP) steels during deep-drawing deformation, deep-drawing experiments were performed. Microtexture measurements were conducted using electron backscattered diffraction (EBSD) to analyze texture evolution. A rate-sensitive polycrystal model was used to predict texture evolution during deep-drawing deformation. In order to evaluate the strain path during deep-drawing deformation, a steady state was assumed in the flange part of a deep-drawn cup. A ratesensitive polycrystal model successfully predicted the texture evolution in DP steels during deep-drawing deformation. The final stable orientations were found to be strongly dependent on the initial location in the blank. Texture analysis revealed that the deep drawability of DP steels decreases as the true strain in the radial direction of the deep-drawn cup increases during deep-drawing deformation.

Press Formability of Austenitic AISI304 Stainless Steel (오스테나이트계 AISI304 스테인레스강판의 프레스 성형특성)

  • Nam, J.B.;Ryoo, D.Y.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.38-50
    • /
    • 1994
  • Fundamental deformation mechanism and plastic behavior of AISI304 austenitic stainless steel were investigated to evaluate press formability. Local and uniform deformation capacity of AISI304 steel were compared to those of ferritic AISI430 steel and Al killed low carbon steel. Nine kinds of austenitic stainless steels having different austenite stabilities were made in laboratory scale to examine the transformation behavior in various deformation mode and variation of mechanical properties. Deformation path and strain distributions along edge corner of commercial sink die were illustrated and effect of austenite stability on press forming of sink die was clarified with experiments using square cup drawing tools.

  • PDF

Deformation-based Strut-and-Tie Model for reinforced concrete columns subject to lateral loading

  • Hong, Sung-Gul;Lee, Soo-Gon;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.157-172
    • /
    • 2016
  • This paper presents a Strut-and-Tie Model for reinforced concrete (RC) columns subject to lateral loading. The proposed model is based on the loading path for the post-yield state, and the geometries of struts and tie are determined by the stress field of post-yield state. The analysis procedure of the Strut-and-Tie Model is that 1) the shear force and displacement at the initial yield state are calculated and 2) the relationship between the additional shear force and the deformation is determined by modifying the geometry of the longitudinal strut until the ultimate limit state. To validate the developed model, the ultimate strength and associated deformation obtained by experimental results are compared with the values predicted by the model. Good agreements between the proposed model and the experimental data are observed.

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

Deformation Characteristics in Sheet Metal Forming with Small Ball (소형 구를 이용한 박판 성형에서의 변형특성)

  • 심명섭;박종진
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2001
  • Recently, the technology of incremental forming for sheet metal components has drawn attention for small-batch productions. In the present investigation, a forming tool containing a freely-rotating ball was developed and applied to forming of various shapes with full annealed Al 1050 sheet. Deformation characteristics occurring during forming with this tool was examined through FEM analysis and grid measurement. It was found that deformation modes developed along a straight path and around a corner are close to those of plane-strain and equi-biaxial stretching, respectively, and that cracks occur mostly at corners for the same depth of tool. FEM analysis was successfully applied to this special type of forming process and provided comparable results to the measurements from experiment.

  • PDF

Evaluation of Single Hardening Constitutive Model for Sand (모래에 대한 단일항복면 구성모델의 평가)

  • Jeong, Jin-Seob;Park Moung-Bae
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.95-103
    • /
    • 1998
  • Solutions of geotechnical engineering problems require calculation of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such calculation even for complicated problems. To get accurate results, realistic stress-strain relationships of soil are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. The nature of stress-path dependency, the principle that governs deformations in sand, and the use of Lade's single work-hardening model for predicting sand response for a variety of stress-paths have been investigated and are examined. The test results and the analyses presented show that under some conditions sand exhibits stress-path dependent behavior. The strains calculated from Lade's single work-hardening model are in reasonable agreement with those measured, but some discrepancies occur. The largest difference between measured and calculated strains occurs for proportional loading with increasing stresses and for stress-path directions.

  • PDF

Statistical Analysis on Lateral Wheel Path Distributions of 2nd and 3rd Traffic Lanes (2, 3차로 통행차량의 횡방향 이격거리에 대한 통계 분석 연구)

  • Kim, Nak-seok
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.1
    • /
    • pp.30-44
    • /
    • 2009
  • Asphalt concrete pavements are often destroyed within the intended design life due to the increasement in traffic volume. The most common types of asphalt concrete pavement damages are permanent deformation and fatigue cracking, and so on. In this research, characteristics of traffic loadings and lateral wheel path distributions are analyzed using the field survey on traffic flow. The obtained traffic characteristics can be used to the decision making for the maintenance policy of roads. According to the traffic lane analysis for the 2nd and 3rd lanes, inner lane vehicles tended to pass to the right side to avoid the opposite side vehicles. In addition, the outside lane vehicles were deviated to the left side to avoid passengers. It is also noted that the lateral wheel path distributions was close to the normal distribution.

  • PDF

A strain hardening model for the stress-path-dependent shear behavior of rockfills

  • Xu, Ming;Song, Erxiang;Jin, Dehai
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.743-756
    • /
    • 2017
  • Laboratory investigation reveals that rockfills exhibit significant stress-path-dependent behavior during shearing, therefore realistic prediction of deformation of rockfill structures requires suitable constitutive models to properly reproduce such behavior. This paper evaluates the capability of a strain hardening model proposed by the authors, by comparing simulation results with large-scale triaxial stress-path test results. Despite of its simplicity, the model can simulate essential aspects of the shear behavior of rockfills, including the non-linear stress-strain relationship, the stress-dependence of the stiffness, the non-linear strength behavior, and the shearing contraction and dilatancy. More importantly, the model is shown to predict the markedly different stress-strain and volumetric behavior along various loading paths with fair accuracy. All parameters required for the model can be derived entirely from the results of conventional large triaxial tests with constant confining pressures.

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.