Simulation of Texture Evolution and Anisotropy Behavior in Dual Phase Steels during Deep Drawing Process

DP강의 디프드로잉 시 집합조직 발달과 이방성 거동 시뮬레이션

  • Song, Young-Sik (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Kim, Dae-Wan (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Yang, Hoe-Seok (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Han, Sung-Ho (Automotive Steel Products Research Group, POSCO Technical Research Laboratories) ;
  • Chin, Kwang-Gun (Automotive Steel Products Research Group, POSCO Technical Research Laboratories) ;
  • Choi, Shi-Hoon (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • Received : 2008.12.31
  • Published : 2009.05.25

Abstract

To investigate the evolution of deformation texture in dual phase (DP) steels during deep-drawing deformation, deep-drawing experiments were performed. Microtexture measurements were conducted using electron backscattered diffraction (EBSD) to analyze texture evolution. A rate-sensitive polycrystal model was used to predict texture evolution during deep-drawing deformation. In order to evaluate the strain path during deep-drawing deformation, a steady state was assumed in the flange part of a deep-drawn cup. A ratesensitive polycrystal model successfully predicted the texture evolution in DP steels during deep-drawing deformation. The final stable orientations were found to be strongly dependent on the initial location in the blank. Texture analysis revealed that the deep drawability of DP steels decreases as the true strain in the radial direction of the deep-drawn cup increases during deep-drawing deformation.

Keywords

References

  1. O. Grassel, L. Kruger, G. Frommeyer, and L. W. Meyer, Int. J. Plasticity. 16, 1391 (2000) https://doi.org/10.1016/S0749-6419(00)00015-2
  2. H. Hayashi and T. Nakagawa, J. Mater. Pro. Tech. 46, 455 (1994) https://doi.org/10.1016/0924-0136(94)90128-7
  3. T. Senuma, ISIJ Int. 41, 520 (2001) https://doi.org/10.2355/isijinternational.41.520
  4. S. H. Han, Y. S. Ahn, K. G. Chin, and I. B. Kim, J. Kor. Inst. Met. & Mater. 46, 683 (2008)
  5. D. T. Llewellyn and D. J. Hillis, Ironmaking and Steelmaking 23, 471 (1996)
  6. C. L. Xie and E. Nakamachi, J. Mater. Pro. Tech. 122, 104 (2002) https://doi.org/10.1016/S0924-0136(01)01234-1
  7. S. Yim, P. Wray, K. M. Tiitto, C. I. Garcia, and A. J. Deardo, ISIJ Int. 43, 1615 (2003) https://doi.org/10.2355/isijinternational.43.1615
  8. W. B. Hutchinson, Int. Met. Rev. 27, 30 (1982)
  9. S.-H. Choi and J. H. Chung, J. Kor. Inst. Met. & Mater. 40, 260 (2002)
  10. D. Daniel, J. Savoie, and J. J. Jonas, Acta Metall. Mater. 41, 1907 (1992)
  11. R. Saha and R. K. Ray, Materials letters. 62, 222 (2008) https://doi.org/10.1016/j.matlet.2007.04.112
  12. L. S. Toth, J. J. Jonas, P. Gilormini, and B. Bacroix, Int. J. Plasti. 6, 83 (1990) https://doi.org/10.1016/0749-6419(90)90031-9
  13. C. Garcia, D. Celentano, F. Flores, J. P. Ponthot, and O. Oliva, J. Mater. Pro. Tech. 172, 461 (2006) https://doi.org/10.1016/j.jmatprotec.2005.11.016
  14. S. Li, E. Hoferlin, A. V. Beal, P. V. Houtte, and C. Teodosiu, Int. J. Plasti. 19, 647 (2003) https://doi.org/10.1016/S0749-6419(01)00079-1
  15. D. Raabe, Y. Wang, and F. Roters, Com. Mater Sci. 34, 221 (2005) https://doi.org/10.1016/j.commatsci.2004.12.072
  16. Y. S. Song, B. J. Kim, S. H. Han, K. G. Chin, and S.-H. Choi. Trans. Mater. Pro. 17, 517 (2008)
  17. D. Daniel and J. J. Jonas, Metall. Trans. 21A, 331 (1990)
  18. L. Delannay, M. Beringhier, Y. Chastel, and R. E. Loge, Mater. Sci. Forum. 495, 1639 (2005) https://doi.org/10.4028/www.scientific.net/MSF.495-497.1639
  19. S.-H. Choi, J. C. Brem, F. Barlat, and K. H. Oh, Acta mater. 44, 587 (1996) https://doi.org/10.1016/1359-6454(95)00214-6
  20. Y. S. Song, B. J. Kim, H. W. Kim, S. B. Kang, and S.-H. Choi, J. Kor. Inst. Met. & Mater. 46, 135 (2008)
  21. S. Matthies, J. Muller, and G. W. Vinel, Textures and Microstructures 10, 77 (1998)
  22. Hibbit, Karlsson and Sorensen, ABAQUS Standard User Manual (1998)
  23. S.-H. Choi, J. H. Cho, K. H. Oh, K. S. Chung, and F. Barlat, Int. J. Mech. Sci. 42, 1571 (2000) https://doi.org/10.1016/S0020-7403(99)00091-0
  24. S.-H. Choi and K. H. Oh, Met. Mater. Int. 3, 252 (1997) https://doi.org/10.1007/BF03025932
  25. S. R. Kalidindi, C. A. Bronkhorst, and L. Anand, J. Mech. Phys. Solids. 40, 537 (1992) https://doi.org/10.1016/0022-5096(92)80003-9
  26. S.-H. Choi, Mater. Sci. Forum. 408-412, 1085 (2002) https://doi.org/10.4028/www.scientific.net/MSF.408-412.1085
  27. S.-H. Choi, S. H. Han, and K. G. Chin, Acta Mater. 57, 1947 (2009) https://doi.org/10.1016/j.actamat.2008.12.034