• Title/Summary/Keyword: deformation monitoring

Search Result 361, Processing Time 0.025 seconds

Monitoring of Volcanic Activity of Augustine Volcano, Alaska Using TCPInSAR and SBAS Time-series Techniques for Measuring Surface Deformation (시계열 지표변위 관측기법(TCPInSAR와 SBAS)을 이용한 미국 알라스카 어거스틴 화산활동 감시)

  • Cho, Minji;Zhang, Lei;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.21-34
    • /
    • 2013
  • Permanent Scatterer InSAR (PSInSAR) technique extracts permanent scatterers exhibiting high phase stability over the entire observation period and calculates precise time-series deformation at Permanent Scatterer (PS) points by using single master interferograms. This technique is not a good method to apply on nature environment such as forest area where permanent scatterers cannot be identified. Another muti-temporal Interferometric Synthetic Aperture Radar (InSAR), Small BAseline Subset (SBAS) technique using multi master interferograms with short baselines, can be effective to detect deformation in forest area. However, because of the error induced from phase unwrapping, the technique sometimes fails to estimate correct deformation from a stack of interferograms. To overcome those problems, we introduced new multi-temporal InSAR technique, called Temporarily Coherence Point InSAR (TCPInSAR), in this paper. This technique utilizes multi master interferograms with short baseline and without phase unwrapping. To compare with traditional multi-temporal InSAR techniques, we retrieved spatially changing deformation because PSs have been found enough in forest area with TCPInSAR technique and time-series deformation without phase unwrapping error. For this study, we acquired ERS-1 and ERS-2 SAR dataset on Augustine volcano, Alaska and detected deformation in study area for the period 1992-2005 with SBAS and TCPInSAR techniques.

Three Dimensional Construction Stage Analysis and Deformation Monitoring of a Reinforced Concrete Highrise Building (철근콘크리트조 초고층건물의 3차원 시공단계 해석 및 시공중 변형 계측)

  • Jeong, Daegye;Yu, Eunjong;Ha, Taehun;Lee, Sungho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.573-580
    • /
    • 2014
  • In this paper, axial strains and lateral displacements of columns in a 58-story reinforced concrete building were measured using vibrating wire gauge and laser scanner, respectively, and compared with predicted values. Predictions were obtained using ASAP, which is a 3D construction stage analysis program developed based on PCA report. Comparisons indicated that columns in the middle of floor plan showed good correlation with predictions. However, the columns in the corners showed some deviations. Lateral displacement of columns between measurement and estimation showed similar trends but considerable deviations, which are seemingly caused by construction error of column faces, and inaccuracy in differential vertical displacement prediction.

Investigation of Earth Pressure on Vertical Shaft by Field Monitoring (현장계측을 통한 원형 수직구 작용하중 분석)

  • Shin, Youngwan;Moon, Kyoungsun;Kang, Hyutaek;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.63-76
    • /
    • 2008
  • This research was carried in order to improve design technique for the vertical shaft of which design guide has not been proposed clearly. The deformation tendency of vertical shaft and distribution of the earth pressure around shaft were reviewed with both of theoretical earth pressure distribution suggested in design criteria and measured data which had been gained from 2 constructing shaft. The distribution of earth pressure applied on the vertical shaft was similar with the result of previous theory for the earth pressure proposed by Shin (2007). Moreover it was observed that asymmetric deformation and earth pressure around vertical shaft were caused by inhomogeneity and anisotropy of the ground. The asymmetric earth pressure ratio ($R_p$) in soil and weathered rock were divergent according to the shape ratio. In addition, it is more reasonable that the value of asymmetric earth pressure ratio ($R_p$) is considered less than 0.35 in the case of constructing shaft under rock.

  • PDF

Development of a Customized Beacon Equipped with a Strain Gauge Sensor to Detect Deformation of Structure Displacement (구조물의 변위 변형 감지를 위한 변형률 센서를 장착한 커스터마이징 비콘 개발)

  • Kim, Junkyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • This study attempted to detect possible collapse and fire accidents in facilities for disaster monitoring of large facilities, and to develop a customized beacon to recognize the internal situation of an IoT-based facility when a disaster occurs. In the case of data measurement using the existing strain gauge sensor, the strain gauge sensor was connected by wire to measure it, but this study changed it to wireless so that the presence and absence of structural deformation can be monitored in real time. In this process, in order to use the Wheatstone bridge, a strain sensor module that can be connected to a customized beacon was manufactured, and a system configuration was conducted to remotely check the measurement data. To verify measurement data, 10 customized beacons and 2 gateways were installed on the 15th floor of the Advanced Institue of Convergence Technology, and as a result of analysis of measurement data, it was confirmed that the strain data values were distributed between 7 and 8.

Smart monitoring analysis system for tunnels in heterogeneous rock mass

  • Kim, Chang-Yong;Hong, Sung-Wan;Bae, Gyu-Jin;Kim, Kwang-Yeom;Schubert, Wulf
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.255-261
    • /
    • 2003
  • Tunnelling in poor and heterogeneous ground is a difficult task. Even with a good geological investigation, uncertainties with respect to the local rock mass structure will remain. Especially for such conditions, a reliable short-term prediction of the conditions ahead and outside the tunnel profile are of paramount importance for the choice of appropriate excavation and support methods. The information contained in the absolute displacement monitoring data allows a comprehensive evaluation of the displacements and the determination of the behaviour and influence of an anisotropic rock mass. Case histories and with numerical simulations show, that changes in the displacement vector orientation can indicate changing rock mass conditions ahead of the tunnel face (Schubert & Budil 1995, Steindorfer & Schubert 1997). Further research has been conducted to quantify the influence of weak zones on stresses and displacements (Grossauer 2001). Sellner (2000) developed software, which allows predicting displacements (GeoFit$\circledR$). The function parameters describe the time and advance dependent deformation of a tunnel. Routinely applying this method at each measuring section allows determining trends of those parameters. It shows, that the trends of parameter sets indicate changes in the stiffness of the rock mass outside the tunnel in a similar way, as the displacement vector orientation does. Three-dimensional Finite Element simulations of different weakness zone properties, thicknesses, and orientations relative to the tunnel axis were carried out and the function parameters evaluated from the results. The results are compared to monitoring results from alpine tunnels in heterogeneous rock. The good qualitative correlation between trends observed on site and numerical results gives hope that by a routine determination of the function parameters during excavation the prediction of rock mass conditions ahead of the tunnel face can be improved. Implementing the rules developed from experience and simulations into the monitoring data evaluation program allows to automatically issuing information on the expected rock mass quality ahead of the tunnel.

  • PDF

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Prediction and Assessment on Consolidation Settlement for Soft Ground by Hydraulic Fill (준설매립 연약지반에 대한 압밀침하 예측 및 평가)

  • Jeon, Je-Sung;Koo, Ja-Kap;Oh, Jeong-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2008
  • This paper describes the performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area composed of soft marine clay with high water content and high compressibility. From field monitoring results, excessive ground settlement compared with predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared with field monitoring results after additional surcharge was applied. It might be used for verification of recalculated results.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

Prediction of Change in Equivalent Circuit Parameters of Transformer Winding Due to Axial Deformation using Sweep Frequency Response Analysis

  • Sathya, M. Arul;Usa, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.983-989
    • /
    • 2015
  • Power transformer is one of the major and key apparatus in electric power system. Monitoring and diagnosis of transformer fault is necessary for improving the life period of transformer. The failures caused by short circuits are one of the causes of transformer outages. The short circuit currents induce excessive forces in the transformer windings which result in winding deformation affecting the mechanical and electrical characteristics of the winding. In the present work, a transformer producing only the radial flux under short circuit is considered. The corresponding axial displacement profile of the windings is computed using Finite Element Method based transient structural analysis and thus obtained displacements are compared with the experimental result. The change in inter disc capacitance and mutual inductance of the deformed windings due to different short circuit currents are computed using Finite Element Method based field analyses and the corresponding Sweep Frequency Responses are computed using the modified electrical equivalent circuit. From the change in the first resonant frequency, the winding movement can be quantified which will be useful for estimating the mechanical withstand capability of the winding for different short circuit currents in the design stage itself.

A Study on the Improvement of Accuracy for Deformation Measurement of Circular Structures by Multiple Method (Multiple-Method에 의한 원형구조물 변형측정의 정확도 향상에 관한 연구)

  • Raymond J. Hintz;Mook, Kang-Joon;Jin, Oh-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.1
    • /
    • pp.13-24
    • /
    • 1988
  • The determination of three-dimensional positions on a circular or cylindrical surface covers a variety of applications. As an example, consider the monitoring of structures, which is an important topic in the broad category of deformation analysis. The use of convergent photography in determination of these positions has the many advantages over survey based procedures. This paper illustrates results from bundle adjustments derived from convergent photography of a cylindrical object, with both metric and non-metric cameras utilized in the test. In addition to standard error comparisons resulting from the error analysis provided by the bundle adjustments, object space coordinates resulting from metric and non-metric camera network geometries will also be compared.

  • PDF