DOI QR코드

DOI QR Code

Monitoring of Volcanic Activity of Augustine Volcano, Alaska Using TCPInSAR and SBAS Time-series Techniques for Measuring Surface Deformation

시계열 지표변위 관측기법(TCPInSAR와 SBAS)을 이용한 미국 알라스카 어거스틴 화산활동 감시

  • Cho, Minji (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Zhang, Lei (The Hong Kong Polytechnic University) ;
  • Lee, Chang-Wook (National Institute of Meteorological Research, Korea Meteorological Administration)
  • Received : 2013.01.07
  • Accepted : 2013.02.15
  • Published : 2013.02.28

Abstract

Permanent Scatterer InSAR (PSInSAR) technique extracts permanent scatterers exhibiting high phase stability over the entire observation period and calculates precise time-series deformation at Permanent Scatterer (PS) points by using single master interferograms. This technique is not a good method to apply on nature environment such as forest area where permanent scatterers cannot be identified. Another muti-temporal Interferometric Synthetic Aperture Radar (InSAR), Small BAseline Subset (SBAS) technique using multi master interferograms with short baselines, can be effective to detect deformation in forest area. However, because of the error induced from phase unwrapping, the technique sometimes fails to estimate correct deformation from a stack of interferograms. To overcome those problems, we introduced new multi-temporal InSAR technique, called Temporarily Coherence Point InSAR (TCPInSAR), in this paper. This technique utilizes multi master interferograms with short baseline and without phase unwrapping. To compare with traditional multi-temporal InSAR techniques, we retrieved spatially changing deformation because PSs have been found enough in forest area with TCPInSAR technique and time-series deformation without phase unwrapping error. For this study, we acquired ERS-1 and ERS-2 SAR dataset on Augustine volcano, Alaska and detected deformation in study area for the period 1992-2005 with SBAS and TCPInSAR techniques.

Permanent Scatterer InSAR (PSInSAR) 기법은 단일 주영상을 가지는 간섭도를 사용하여, 안정적인 신호를 보내는 고정산란체를 추출하고 시간에 따른 지표변위를 계산한다. 그러나 산악지역과 같이 고정산란체를 추출하기 어려운 지역에서는 적용되기 어렵다. 또 다른 다중시기 간섭기법인 Small BAseline Subset (SBAS)은 기선거리가 짧은 다중시기 주영상을 가지는 간섭도를 이용하기 때문에 산악지역에도 효과적으로 적용될 수 있으나, 사용되는 간섭도의 절대 위상 복원이 적절히 수행되지 못했을 경우 정확한 지표변위 계산이 어렵다. 본 연구에서는 앞서 언급된 다중시기 간섭기법들의 단점을 극복한 Temporarily Coherence Point InSAR (TCPInSAR) 기법을 소개한다. 이 기법은 간섭도의 절대 위상 복원이 필요 없고, 기선거리가 짧은 다중시기 주영상을 적용한다. 기존의 두 다중시기 간섭기법에 비해 산악지역에서도 충분한 고정산란체를 추출하여 공간적인 지표변위 양상을 관측하기에 충분하고, 절대 위상 복원으로 인한 오차가 없는 시계열 변위를 얻을 수 있다. 본 연구를 위해 미국 알라스카 어거스틴 화산의 ERS-1과 ERS-2 SAR 자료를 수집하여, SBAS와 TCPInSAR 기법을 통해 1992년부터 2005년까지 발생된 지표변위를 관측하고 시계열 지표변위 결과를 비교하였다.

Keywords

References

  1. Amelung F., D.L. Galloway, J.W. Bell, H.A. Zebker, and R.J. Laczniak, 1999. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation, Geology, 27: 483-486. https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2
  2. Bailey, J.E., K.G. Dean, J. Dehn, and P.W. Webley, 2010. Integrated satellite observation of the 2006 eruption of Augustine volcano, USGS Professional Paper, 1769, pp. 481-506.
  3. Beget, J.E. and Z. Kowalik, 2006. Confirmation and calibration of computer modeling of tsunamis produced by Augustine volcano, Alaska, Science of Tsunami Hazards, 24(4): 257-267.
  4. Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti, 2002. A new algorithm for surface deformation monitoring based on small baseline differential interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40: 2375-2383. https://doi.org/10.1109/TGRS.2002.803792
  5. Deshon, H.R., C.H. Thurber, and J.A. Power, 2010. Earthquake waveform similarity and evolution at Augustine volcano from 1993 to 2006, USGS Professional Paper, 1769, pp. 103-118.
  6. Ferretti, A., C. Prati, and F. Rocca, 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 38: 2202-2212. https://doi.org/10.1109/36.868878
  7. Ferretti, A., C. Prati, and F. Rocca, 2001. Permanent scatteres in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20. https://doi.org/10.1109/36.898661
  8. Jung, H.C., S.W. Kim, H.S. Jung, H.D. Min, and J.S. Won, 2007. Satellite observation of coal mining subsidence by persistent scatterer analysis, Engineering Geology, 92: 1-13. https://doi.org/10.1016/j.enggeo.2007.02.007
  9. Jung, H.S., C.W. Lee, J.W. Park, K.D. Kim, and J.S. Won, 2008. Improvement of Small Baseline Subset(SBAS) algorithm for measuring time-series surface deformations from differential SAR interferograms, Korean Journal of Remote Sensing, 24(2): 165-177(in Korean with English abstract). https://doi.org/10.7780/kjrs.2008.24.2.165
  10. Kienle, J. and G.E. Shaw, 1979. Plume dynamics, thermal energy and long-distance transport of vulcanian eruption clouds from Augustine volcano, Alaska, Journal of Volcanology and Geothermal Research, 6(1-2): 139-164. https://doi.org/10.1016/0377-0273(79)90051-9
  11. Kim, S.W., 2010. A comparision of InSAR techniques for deformation monitoring using multitemporal SAR, Korean Journal of Remote Sensing, 26(2): 143-151(in Korean with English abstract). https://doi.org/10.7780/kjrs.2010.26.2.143
  12. Kim, S.W. and M. Cho, 2011. Persistent scatterer selection and network analysis for X-band PSInSAR, Korean Journal of Remote Sensing, 27(5): 521-534(in Korean with English abstract). https://doi.org/10.7780/kjrs.2011.27.5.521
  13. Larsen, J.F., C.J. Nye, M.L. Coombs, M. Tilman, P. Izbekov, and C. Cameron, 2010. Petrology and geochemistry of the 2006 eruption of Augustine volcano, USGS Professional Parer, 1769, pp. 335-382.
  14. Lee, C.W., Z. Lu, H.S. Jung, J.S. Won, and D. Dzurisin, 2010. Surface deformation of Augustine volcano(Alaska), 1992-2005, from multiple-interferogram processing using a refined SBAS InSAR approach, USGS Professional Paper, 1769, pp. 453-465.
  15. Lu, Z., C. Wicks, D. Dzurisin, and J. Power, 2005a. InSAR studies of Alaska volcanoes, Korean Journal of Remote Sensing, 21(1): 59-72. https://doi.org/10.7780/kjrs.2005.21.1.59
  16. Lu, Z., T. Masterlark, and D. Dzurisin, 2005b. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation, Journal of Geophysical Research, 110(B2): B02403, doi:10.1029/2004JB00348.
  17. Massonnet, D. and K.L. Feigl, 1998. Radar interferometry and its application to changes in the earth's surface, Review of Geophysics, 36: 441-500. https://doi.org/10.1029/97RG03139
  18. Masterlark, T., Z. Lu, and R. Rykhus, 2006. Thickness distribution of a cooling pyroclastic flow deposit on Augustine volcano, Alaska-optimization using InSAR, FEMs, and an adaptive mesh algorithm, Journal of Volcanology and Geothermal Research, 150: 186-201. https://doi.org/10.1016/j.jvolgeores.2005.07.004
  19. McGee, K.A., M.P. Doukas, R.G. McGimsey, C.A. Neal, and R.L. Wessels, 2010. Emission of $SO_2$, $CO_2$, and $H_2S$ from Augustine volcano, 2002-2008, USGS Professional Paper, 1769, pp. 609-627.
  20. Michelle, L.C., F.B. Katharine, W.V. James, J.S. David, E.T. Evan, L.W. Rick, and G.M. Robert, 2010. Timing, distribution, and volume of proximal products of the 2006 eruption of Augustine volcano, USGS Professional Parer, 1769, pp. 145-185.
  21. Miller, T.M., R.G. McGimsey, D.H. Richter, J.R. Riehle, C.J. Nye, M.E. Yount, and J.A. Dumoulin, 1998. Catalog of the historically active volcanoes of Alaska, U.S. Geological Survey Open-File Report 98-582, pp. 104.
  22. Park, J.W., J.H. Choi, Y.K. Lee, and J.S. Won, 2012. Intertidal DEM generation using satellite radar interferometry, Korean Journal of Remote Sensing, 28(1): 121-128(in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.1.121
  23. Pieri, D. and M. Abrams, 2005. ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia, Remote Sensing of Environment, 99: 84-94. https://doi.org/10.1016/j.rse.2005.06.012
  24. Power, J.A., 1988. Seismicity associated with the 1986 eruption of Augustine volcano, Alaska: Fairbanks, University of Alaska, unpub. M.S, thesis, pp. 142.
  25. Power, J.A. and D.J. Lalla, 2010. Seismic observations of Augustine volcano, 1970-2007, USGS Professional Parer, 1769, pp. 3-40.
  26. Stancliffe, R.P.W. and M. Kooij, 2001. The use of stellite-based radar interferometry to monitor production activity at the Cold Lake heavy oil field, Alberta, Canada, American Association of Petroleum Geologists Bulletin, 85(5): 781-793.
  27. Waythomas, C.F. and R.B. Waitt, 1998. Preliminary volcano-hazard assessment for Augustine volcano, Alaska, U.S. Geological Survey Open-File Report 98-0106, pp. 39.
  28. Wright, P.A. and R.J. Stow, 1999. Detecting mining subsidence from space, International Journal of Remote Sensing, 20: 1183-1188. https://doi.org/10.1080/014311699212939
  29. Zhang, L., X.L. Ding, and Z. Lu, 2011. Modeling PSInSAR time series without phase unwrapping, IEEE Transactions on Geoscience and Remote Sensing, 49: 547-556. https://doi.org/10.1109/TGRS.2010.2052625
  30. Zhang, L., Z. Lu, X. Ding, H.S. Jung, G. Feng, and C.W. Lee, 2012. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin, Remote Sensing of Environment, 117: 429-439. https://doi.org/10.1016/j.rse.2011.10.020

Cited by

  1. Interferometric coherence analysis using space-borne synthetic aperture radar with respect to spatial resolution vol.29, pp.4, 2013, https://doi.org/10.7780/kjrs.2013.29.4.4
  2. Surface deformation monitoring of Augustine volcano, Alaska using GPS measurement - A case study of the 2006 eruption - vol.29, pp.5, 2013, https://doi.org/10.7780/kjrs.2013.29.5.10
  3. Ground Subsidence Measurements of Noksan National Industrial Complex using C-band Multi-temporal SAR images vol.30, pp.2, 2014, https://doi.org/10.7780/kjrs.2014.30.2.1
  4. Analysis of Optical Satellite Images and Pyroclastic Flow Inundation Model for Monitoring of Pyroclastic Flow Deposit Area vol.30, pp.2, 2014, https://doi.org/10.7780/kjrs.2014.30.2.2
  5. Analysis of the relationship between volcanic eruption and surface deformation in volcanoes of the Alaskan Aleutian Islands using SAR interferometry pp.1598-7477, 2018, https://doi.org/10.1007/s12303-018-0050-z
  6. DInSAR 멀티 트랙 시계열 기법을 이용한 알라스카 시구암 화산의 2차원 지표변위 관측 vol.30, pp.6, 2013, https://doi.org/10.7780/kjrs.2014.30.6.3
  7. 지진·화산 연구에 대한 위성영상 활용 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.4.1
  8. Analysis of Land Surface Deformation in Chagan Lake Region Using TCPInSAR vol.11, pp.18, 2013, https://doi.org/10.3390/su11185090