• Title/Summary/Keyword: deformation behaviors

Search Result 668, Processing Time 0.023 seconds

The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate (평판용접에 관한 평면변형 열탄소성 해석)

  • 방한서;한길영
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

Theoretical Analysis of Anisotropic Laminated Shells with Shear Deformation (전단변형을 고려한 이방성 적층셜의 이론해석)

  • Kwun, Ik-No;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.85-92
    • /
    • 2001
  • The structural behaviors of anisotropic laminated shells are quite different from that of isotropic shells, Also, the classical theory of shells based on neglecting transverse shear deformation is invalid for laminated shells. Thus, to obtain the more exact behavior of laminated shells, effects of shear deformation should be considered in the analysis. As the length of x-axis or y-axis is increase, the effects of transverse shear deformation are decrease because the stiffness for the axis according to the increasing of length is large gradually. In this paper, the governing equations for anisotropic laminated shallow shell including the effects of shear deformation are derived. And then, by using Navier's solutions for shallow shells having simple supported boundary, extensive numerical studies for anisotropic laminated shallow shells were made to investigate the effects of shear deformation for 3 typical shells. Also, static analysis is carried out for cross-ply laminated shells considering the effects of various geometrical parameters, e,g., the shallowness ratio, the thickness ratio and the ratio of a(length of x-axis)-to-b(length of y-axis). The results are compared with existed one and show good agreement.

  • PDF

Effect of Interaction Between Dislocation and Nitrides on High Temperature Deformation Behavior of12%Cr-15%Mn Austenitic Steels (전위와 질화물의 상호작용이 12%Cr-15%Mn 오스테나이트강의 고온변형거동에 미치는 영향)

  • 배동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.58-62
    • /
    • 2001
  • The objective of research is to clarify the interaction between dislocations and precipitates during high temperature creep deformation behaviors of high n austenitic steels. After measuring the internal stress in minimum creep rate state under applied stress of 236MPa at 873K, a transmission electron microscope (TEM) observation was performed to investigate the interaction between dislocations and precipitates during high temperature creep deformation. The band widths and values of internal stress increased when the nitride precipitates distribute more densely. Fine nitrides disturbed the dislocation movement with pinning the dislocations and perfect dislocations were separated into Shockley partial dislocations by fine nitrides. Coarse nitrides disturbed the dislocation movement with climb mechanism.

  • PDF

Analysis of the nano indentation using MSG plasticity (Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석)

  • 이헌기;고성현;한준수;박현철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.413-417
    • /
    • 2004
  • Recent experiments have shown the 'size effects' in micro/nano scale. But the classical plasticity theories can not predict these size dependent deformation behaviors because their constitutive models have no characteristic material length scale. The Mechanism - based Strain Gradient(MSG) plasticity is proposed to analyze the non-uniform deformation behavior in micro/nano scale. The MSG plasticity is a multi-scale analysis connecting macro-scale deformation of the Statistically Stored Dislocation(SSD) and Geometrically Necessary Dislocation(GND) to the meso-scale deformation using the strain gradient. In this research we present a study of nano-indentation by the MSG plasticity. Using W. D. Nix and H. Gao s model, the analytic solution(including depth dependence of hardness) is obtained for the nano indentation , and furthermore it validated by the experiments.

  • PDF

An analysis about the behavior of rubber component with large deformation (대변형을 하는 고무 부품의 거동에 관한 해석)

  • Han Moon-Sik;Cho Jae-Ung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.47-53
    • /
    • 2005
  • The non-linear finite element program of the large deformation analysis by computer simulation has been used in the prediction and evaluation of the behaviors of the non-linear rubber components. The analysis of rubber components requires the tools modelling the special materials that are quite different from those used for the metallic parts. The nonlinear simulation analysis used in this study is expected to be widely applied in the design analysis and the development of several rubber components which are used In the manufacturing process of many industries. By utilizing this method, the time and cost can also be saved in developing the new rubber product. The objective of this study is to analyze the rubber component with the large deformation and non-linear properties.

Dynamic Deformation Behavior of Rubber Under High Strain-Rate Compressive Loading by Using Plastic SHPB Technique (플라스틱 SHPB기법을 사용한 고무의 고변형률 하중 하에서의 동적변형 거동)

  • 이억섭;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.158-165
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain rate of the order of 10$^3$/s∼l0$^4$/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from structure under varying dynamic loading are determined by using plastic SHPB technique. A transition point to scope with the dynamic deformation behavior of rubber-like material is defined in this paper and used to characterize the specifics of the dynamic deformation of rubber materials.

Thermal Pro0perties and High Temperature Deformation Behaviors of Al-Ni-Y Amprphous Alloy (Al-Ni-Y 비정질 합금의 열적특성 및 고온변형특성에 관한 연구)

  • 고병철;김종현;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.72-75
    • /
    • 1998
  • High temperature deformation behavior of Al85Ni10Y5 alloy extrudates fabricated with amorphous ribbons was investigated at temperature range form 300 to 550$^{\circ}C$ by torsion tests. Thermal properties of amorphous ribbons as a function of aging temperature was studied by Differential Scanning Calorimetry(DSC). The Al phase crystallite firstly formed in the amorphous ribbons and its crystallization temperature(Tx) was ∼210$^{\circ}C$. During the processings of consolidation and extrusion, nano-grained structure was formed in the Al85Ni10Y5 alloy extrudates. The as-extrudated Al85Ni10Y5 alloy and the Al85Ni10Y5 alloy annealed at 250$^{\circ}C$ for 1 hour showed the flow curve of DRV(dynamic recovery) during hot deformation at 400-550$^{\circ}C$. On the other hand, the Al85Ni10Y5 alloy annealed at 400$^{\circ}C$ for 1 hour showed the flow curve of DRX(dynamic recrystallization) during hot deformation at 450-500$^{\circ}C$.

  • PDF

An Analysis on Brazier Effect of Cylindrical Tubes Under Pure Bending by Upper Bound Method (상계 해법을 이용한 순수 굽힘하의 원형 튜브의 단면 면화 해석)

  • Koo, Sang-Wan;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.524-530
    • /
    • 2003
  • This paper presents a new model on deformation characteristics of cylindrical tubes under pure bending. The model is based on the upper bound method that minimizes total strain energy of a system. It does not assume inextensibility condition. Geometric relations and displacement fields are derived by analysis of deformation behaviors of elastic tubes. Simulations are calculated using numerical optimization and integration techniques. The results give information about cross-sectional deformation of cylindrical tubes. Simulation results are compared with available data in literatures, which show that this method predicts deformation characteristics of tube bending process.

Numerical Analysis on Deformation of Submerged Structures using 2-Dimensional VOF-DEM Model

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.785-791
    • /
    • 2007
  • In this paper we proposed a model that the deformation of the submerged rubble mound breakwaters composed with materials of various size, induced by wave action, can be computed. The water particle kinematics by waves in porous mound structure are computed by CADMAS-SURF, then the deformation of structure is computed using DEM module. To investigate the interaction of wave and sectional deformation of structures, analysis is accomplished by two steps. Analysis at the first step is executed with incipient mound. And analysis at the second step is executed with deformed mound by wave action. Furthermore, behaviors of materials are influenced by various properties such as the contact stiffness and the friction angle. Therefore, in order to present the behavior of the element caused by various properties, computations are accomplished with random coefficients by using the Monte Carlo simulation.

A unified consistent couple stress beam theory for functionally graded microscale beams

  • Chih-Ping Wu;Zhen Huang
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.103-116
    • /
    • 2024
  • Based on the consistent couple stress theory (CCST), we develop a unified formulation for analyzing the static bending and free vibration behaviors of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories, as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories, can be obtained by assigning some specific shape functions of the shear deformations varying through the thickness direction of the FGMBs in the unified formulation. The above theories are thus included as special cases of the unified CCST. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. The impacts of some essential factors on the deformation, stress, and natural frequency parameters of the FGMBs are examined, including the material length-scale parameter, the aspect ratio, and the material-property gradient index.