• Title/Summary/Keyword: deformable

Search Result 537, Processing Time 0.023 seconds

Surface Rendering in Abdominal Aortic Aneurysm by Deformable Model (복부대동맥의 3차원 표면모델링을 위한 가변형 능동모델의 적용)

  • Choi, Seok-Yoon;Kim, Chang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.266-274
    • /
    • 2009
  • An abdominal aortic aneurysm occurs most commonly in older individuals (between 65 and 75), and more in men and smokers. The most important complication of an abdominal aortic aneurysm is rupture, which is most often a fatal event. An abdominal aortic aneurysm weakens the walls of the blood vessel, leaving it vulnerable to bursting open, or rupturing, and spilling large amounts of blood into the abdominal cavity. surface modeling is very useful to surgery for quantitative analysis of abdominal aortic aneurysm. the 3D representation and surface modeling an abdominal aortic aneurysm structure taken from Multi Detector Computed Tomography. The construction of the 3D model is generally carried out by staking the contours obtained from 2D segmentation of each CT slice, so the quality of the 3D model strongly defends on the precision of segmentation process. In this work we present deformable model algorithm. deformable model is an energy-minimizing spline guided by external constraint force. External force which we call Gradient Vector Flow, is computed as a diffusion of a gradient vectors of gray level or binary edge map derived from the image. Finally, we have used snakes successfully for abdominal aortic aneurysm segmentation the performance of snake was visually and quantitatively validated by experts.

Buckling analysis of perforated nano/microbeams with deformable boundary conditions via nonlocal strain gradient elasticity

  • Ugur Kafkas;Yunus Unal;M. Ozgur Yayli;Busra Uzun
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.339-353
    • /
    • 2023
  • This work aims to present a solution for the buckling behavior of perforated nano/microbeams with deformable boundary conditions using nonlocal strain gradient theory (NLSGT). For the first time, a solution that can provide buckling loads based on the non-local and strain gradient effects of perforated nanostructures on an elastic foundation, while taking into account both deformable and rigid boundary conditions. Stokes' transformation and Fourier series are used to realize this aim and determine the buckling loads under various boundary conditions. We employ the NLSGT to account for size-dependent effects and utilize the Winkler model to formulate the elastic foundation. The buckling behavior of the perforated nano/microbeams restrained with lateral springs at both ends is studied for various parameters such as the number of holes, the length and filling ratio of the perforated beam, the internal length, the nonlocal parameter and the dimensionless foundation parameter. Our results indicate that the number of holes and filling ratio significantly affect the buckling response of perforated nano/microbeams. Increasing the filling ratio increases buckling loads, while increasing the number of holes decreases buckling loads. The effects of the non-local and internal length parameters on the buckling behavior of the perforated nano/microbeams are also discussed. These material length parameters have opposite effects on the variation of buckling loads. This study presents an effective eigenvalue solution based on Stokes' transformation and Fourier series of the restrained nano/microbeams under the effects of elastic medium, perforation parameters, deformable boundaries and nonlocal strain gradient elasticity for the first time.

Implementation of Markerless Augmented Reality with Deformable Object Simulation (변형물체 시뮬레이션을 활용한 비 마커기반 증강현실 시스템 구현)

  • Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2016
  • Recently many researches have been focused on the use of the markerless augmented reality system using face, foot, and hand of user's body to alleviate many disadvantages of the marker based augmented reality system. In addition, most existing augmented reality systems have been utilized rigid objects since they just desire to insert and to basic interaction with virtual object in the augmented reality system. In this paper, unlike restricted marker based augmented reality system with rigid objects that is based in display, we designed and implemented the markerless augmented reality system using deformable objects to apply various fields for interactive situations with a user. Generally, deformable objects can be implemented with mass-spring modeling and the finite element modeling. Mass-spring model can provide a real time simulation and finite element model can achieve more accurate simulation result in physical and mathematical view. In this paper, the proposed markerless augmented reality system utilize the mass-spring model using tetraheadron structure to provide real-time simulation result. To provide plausible simulated interaction result with deformable objects, the proposed method detects and tracks users hand with Kinect SDK and calculates the external force which is applied to the object on hand based on the position change of hand. Based on these force, 4th order Runge-Kutta Integration is applied to compute the next position of the deformable object. In addition, to prevent the generation of excessive external force by hand movement that can provide the natural behavior of deformable object, we set up the threshold value and applied this value when the hand movement is over this threshold. Each experimental test has been repeated 5 times and we analyzed the experimental result based on the computational cost of simulation. We believe that the proposed markerless augmented reality system with deformable objects can overcome the weakness of traditional marker based augmented reality system with rigid object that are not suitable to apply to other various fields including healthcare and education area.

A 2D FE Model for Unique Solution of Peening Residual Stress in Single Shot Impact (단일 숏 충돌시 피닝잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.362-370
    • /
    • 2008
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters consist of elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. As a kinematical parameter, there is impact velocity. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peening factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

Realtime Processing for Marker Tracking in Smart-Phone Environment Using Deformable Searching Area (스마트폰 환경하의 실시간 처리를 위한 가변 탐색영역을 이용한 마커 추적 방법)

  • Kim, Se-Hoon;Lim, Sung-Jun;Lee, Min-Ho;Kim, Gye-Yuong;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.542-546
    • /
    • 2009
  • This paper introduces a Mixed-Reality based Software technology in Smart-Phone Environment. The field of Mixed-Reality in mobile environment is relatively young. but Cause to develop Mobile infra and improvement of mobile device, open-platform mobile OS, the request extended This paper suggest the method for Marker Detection and Marker Tracking method. This method is the one of some kind of a base-technology in Mixed Reality. this method is to effect to location and registration. This paper suggest the method in low CPU computing power. Using a deformable searching area, the method improve computing power. and Using a Cam-shift algorithm, we suggest a calibration free method.

  • PDF

Tracking a Moving Object Using an Active Contour Model Based on a Frame Difference Map (차 영상 맵 기반의 능동 윤곽선 모델을 이용한 이동 물체 추적)

  • 이부환;김도종;최일;전기준
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.153-163
    • /
    • 2004
  • This paper presents a video tracking method for a deformable moving object using an active contour model in the image sequences. It is quite important to decide the local convergence directions of the contour points for correctly extracting the boundary of the moving object with deformable shape. For this purpose, an energy function for the active contour model is newly proposed by adding a directional energy term using a frame difference map to tile Greedy algorithm. In addition, an updating rule of tile frame difference map is developed to encourage the stable convergence of the contour points. Experimental results on a set of synthetic and real image sequences showed that the proposed method can fully track the deformable object while extracting the boundary of the object elaborately in every frame.

An Eigen Analysis with Out-of-Plane Deformable Ring Element (면외변형 링 요소를 이용한 고유해석)

  • Moon, Won-Joo;Min, Oak-Key;Kim, Yong-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1719-1730
    • /
    • 1993
  • This paper presents the theoretical natural frequencies of out-of-plane deformable ring based on the variables such as out-of-plane deflection, torsional rotation and shear rotation. Based on the same variables, a finite element eigen analysis is carried out by using the $C^0$-continuous, isoparametric element which has three nodes per element and three degrees-of-freedom at each node. Numerical experiments are peformed to find the integration scheme which produces accurate natural frequencies, natural modes and correct rigid body motion. The uniformly reduced integration and the selective reduced integration give more accurate numerical frequencies than the uniformly full integration, but the uniformly reduced integration produces incorrect rigid body motion while selective reduced integration does correct one. Therefore, the ring element based on the three variables which employes selective reduced integration is recommended to avoid spurious modes, to alleviate the error due to shear locking and to produce correct rigid body motion, simultaneously.

Locating and Extracing the Mouth in Human Face Images (얼굴 이미지에서 입 영역 분할)

  • Choe, Jeong-Il;Kim, Su-Hwan;Lee, Pil-Gyu
    • Korean Journal of Cognitive Science
    • /
    • v.8 no.4
    • /
    • pp.55-62
    • /
    • 1997
  • We proposed a method for locating of mouth using deformable templates, described by a parameterized template. An energy function is defined which links, edges, peaks, valleys in image intensity to corresponding properties of the template. The template deforms itself by altering its parameter values to minimize the energy function. The minimized energy function's parameter values can be used as descriptors for the feature. We propose a method for locating mouth fast, accurately by limiting a range of parameters' value and getting initial value of parameters' by preprocessing.

  • PDF

Post-Buckling of Shear Deformable Uniform Columns Under a Combined Load (조합하중을 받는 전단변형 기둥의 좌굴 후 거동 해석)

  • Yoo, Yeong Chan;Shin, Young Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.313-320
    • /
    • 2003
  • The governing equation of the post-buckling of shear-deformable uniform columns under a combined load consisting of a uniformly distributed axial load and a concentrated load at a free end was derived and the post-buckling analysis was investigated by using differential transformation. The loads were obtained for various end-slopes. The results obtained by the present method agree well with published results. In this paper, the differential transformation method was illustrated through its application to the non-linear differential equation of the post-buckling. It is expected that applications of the method to more challenging problems will are expected follow in future to ensue.

Effects of Rolling and Cooling Conditions on Microstructures and Mechanical Properties of High-Deformable Pipeline Steels (고변형능 라인파이프강의 미세조직과 기계적 특성에 미치는 압연 및 냉각 조건의 영향)

  • Lee, S.I.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.5
    • /
    • pp.235-241
    • /
    • 2014
  • Effects of rolling and cooling conditions on microstructures and mechanical properties of high-deformable pipeline steels were investigated in this study. Six kinds of pipeline steels were fabricated by varying rolling and cooling conditions, and their microstructures were analyzed by scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy. Tensile and Charpy impact tests were conducted on the steels in order to examine the mechanical properties. The steels rolled in the two-phase region showed better low-temperature toughness than those in the single-phase region due to the larger amount of ferrites having high-angle boundaries, although they have lower strength and absorbed energy. The steel rolled in single-phase and finish-cooled at higher temperature showed a good combination of high strength and good low-temperature toughness as well as excellent deformability of the lowest yield ratio and the highest uniform elongation because of the presence of fine ferrite and a mixture of various low-temperature transformation phases.