• 제목/요약/키워드: deflection-to-span ratio

검색결과 93건 처리시간 0.024초

철근콘크리트 휨부재의 처짐 간접제어를 위한 한계 지간/깊이-비 연구 (Limit Span/Depth Ratio for Indirect Deflection Control in Reinforced Concrete Flexural Members)

  • 최승원;김우
    • 대한토목학회논문집
    • /
    • 제31권1A호
    • /
    • pp.35-41
    • /
    • 2011
  • 콘크리트구조설계기준에서는 일반적으로 처짐을 제어하기 위해 직접처짐제어법과 간접처짐제어법을 제시하고 있다. 이 때 처짐/깊이-비는 허용 처짐량을 초과하지 않도록 제한된다는 점에서 간접처짐제어법이 더 효과적이다. 실제 처짐량은 많은 요소에 의해 영향을 받기 때문에 실제 처짐량을 정확하게 산정하는 것은 어렵다. 이 연구에서는 철근콘크리트 부재의 사용한 계상태에서 처짐량을 직접 계산함으로써 한계 지간/깊이-비를 산정하였다. 이 때 처짐은 재료 모델로부터 산정된 휨곡률을 통해 산정하였다. 해석의 주요 변수는 인장증강효과 모델, 콘크리트 강도, 단면 크기 및 압축 철근의 유무이다. 해석 결과 2차식 형태의 인장증강효과 모델을 사용함으로써 해석의 일관성을 도모할 수 있는 것으로 나타났다. 또한 한계 지간/깊이-비는 단면 크기와 관계없이 재료 강도와 인장 및 압축 철근비에 따라 변화하는 것으로 나타났다.

콘크리트 바닥부재 설계를 위한 최소두께 산정식 제안 (Span-to-Depth Ratio Equation for Reinforced Concrete Floor Members)

  • 이영학;정광량;최봉섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.205-208
    • /
    • 2005
  • A single span-to-depth ratio function is proposed for control of deflection in one-way concrete construction. The equation can be applied to one-way slabs, beams, and flat plates. Effects of cracking, time-dependent deformation, boundary conditions, applied loading, and target deflection-to-span ratio are taken into account.

  • PDF

Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition

  • Ding, Fa-xing;Wang, Wenjun;Jiang, Binhui;Wang, Liping;Liu, Xuemei
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.355-367
    • /
    • 2021
  • This paper investigates the mechanical response of simply supported one-way reinforced concrete slabs under fire through numerical analysis. The numerical model is constructed using the software ABAQUS, and verified by experimental results. Generally, mechanical response of the slab can be divided into four stages, accompanied with drastic stress redistribution. In the first stage, the bottom of the slab is under tension and the top is under compression. In the second stage, stress at bottom of the slab becomes compression due to thermal expansion, with the tension zone at the mid-span section moving up along the thickness of the slab. In the third stage, compression stress at bottom of the slab starts to decrease with the deflection of the slab increasing significantly. In the fourth stage, the bottom of the slab is under tension again, eventually leading to cracking of the slab. Parametric studies were further performed to investigate the effects of load ratio, thickness of protective layer, width-span ratio and slab thickness on the performance of the slab. Results show that increasing the thickness of the slab or reducing the load ratio can significantly postpone the time that deflection of the slab reaches span/20 under fire. It is also worth noting that slabs with the span ratio of 1:1 reached a deflection of span/20 22 min less than those of 1:3. The thickness of protective layer has little effect on performance of the slab until it reaches a deflection of span/20, but its effect becomes obvious in the late stages of fire.

Study on midtower longitudinal stiffness of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Hang;Xu, Mingsai
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.641-649
    • /
    • 2020
  • The determination of midtower longitudinal stiffness has become an essential component in the preliminary design of multi-tower suspension bridges. For a specific multi-tower suspension bridge, the midtower longitudinal stiffness must be controlled within a certain range to meet the requirements of sliding resistance coefficient and deflection-to-span ratio. This study presents a numerical method to divide different types of midtower and determine rational range of longitudinal stiffness for rigid midtower. In this method, influence curves of midtower longitudinal stiffness on sliding resistance coefficient and maximum vertical deflection-to-span ratio are first obtained from the finite element analysis. Then, different types of midtower are divided based on the regression analysis of influence curves. Finally, rational range for longitudinal stiffness of rigid midtower is derived. The Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is selected as the subject of this study. This will be the first three-tower four-span suspension bridge with steel truss girders and concrete midtower in the world. The proposed method provides an effective and feasible tool for engineers to design midtower of multi-tower suspension bridges.

부분분포하중이 평면 포물선아치의 동적응답에 마치는 영향 (Effects of Partially Distributed Loads on Dynamic Response of Plane Parabolic Arch)

  • 조진구;박근수
    • 한국농공학회논문집
    • /
    • 제46권6호
    • /
    • pp.21-28
    • /
    • 2004
  • This study aims to investigate the effects of partially distributed loads on the dynamic behaviour of steel parabolic arches by using the elasto-plastic finite element model based on the Von Mises yield criteria and the Prandtl-Reuss How rule. For this purpose, the vertical and the radial load conditions were considered as a distributed loading and the loading range is varied from 40% to 100% of arch span. Normal arch and arch with initial deflection were studied. The initial deflection of arch was assumed by the sinusoidal motile of ${\omega}_i\;=\;{\\omega}_O$ sin ($n{\pi}x/L$). Several numerical examples were tested considering symmetric initial deflection when the maximum initial deflection at the apex is fixed as L/1000. The analysis resluts showed that the maximum deflection at the apex of arch was occurred when 70% of arch span was loaded. The maximum deflection at the quarter point of arch span was occurred when 50% of arch span was loaded. It is known that the optimal rise to span ratio between 0.2 and 0.3 when the vertical or radial distributed load is applied. It is verified that the influence of initial deflection of radial load case is more serious than that of vertical load case.

전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구 (A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio)

  • 박종건
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

ILM 공법에 의해 시공된 2경간 구조물의 해석 (Analysis of Two-Span Structures Constructed by Incremental Launching Method)

  • 김성훈;김부규;최준혁
    • 한국강구조학회 논문집
    • /
    • 제28권1호
    • /
    • pp.35-42
    • /
    • 2016
  • 본 연구는 기존의 시설물을 횡단하기 위한 목적으로 시공된 지간장이 다른 2경간 연속 구조물을 대한 압출공법을 적용에 관한 것이다. 압출구간이 비교적 짧은 구조물은 인접 경간의 길이가 다른 경우가 많고 압출시 후방 구조물이 연속되지 않는 경우가 많기 때문에 부재 단면력이 최대 내력에 도달하기 이전에 과도한 처짐과 전도가 발생하여 구조적 안정성이 확보되지 못하는 경우가 있다. 이러한 구조물의 시공단계별 구조물의 처짐과 전도에 대한 안정성을 예측하기 위해서 해석적 연구를 수행하였다. 해석에서의 매개변수는 압출추진코와 상부구조물의 길이비, 지간비, 중량비 등이다.해석결과로부터 매개변수의 영향을 분석하였고 압출추진코에서의 구조물의 처짐과 전도 발생 조건식을 제시하였다.

FCM 교량의 경간비(SLR) 결정 (Determination of Span Length Ratio in Bridges Constructed using a Free Cantilever Method)

  • 곽효경;손제국
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.259-266
    • /
    • 2003
  • This paper introduces a relation to determine the span ratio between exterior and interior spans, which is strongly required in the preliminary design stage of bridges constructed by Free Cantilever Method (FCM). A relation for the initial tendon force is derived on the basis of an assumption that no vertical deflection occurs at the far end of a cantilever beam due to the balanced condition between the self-weight and the cantilever tendons. In advance, the span ratio can be determined by using an assumption that the negative maximum moment must be the same with the positive maximum moment along the entire spans to be a rational bridge design. Finally, many rigorous lime-dependent analyses are conducted to establish the validity of the introduced relations. The obtained numerical results show that the rational design of FCM bridges may be achieved when the span length ratio of the exterior span to the interior span ranges about 0.75 to 0.8.

  • PDF

휨 모멘트에 대한 오이의 응력이완(應力弛緩) 특성(特性) (Stress Relaxation Properties of Cucumber under Bending Moment)

  • 송천호;김만수;박종민
    • Journal of Biosystems Engineering
    • /
    • 제18권3호
    • /
    • pp.262-269
    • /
    • 1993
  • Stress relaxation behaviors of the cucumber under bending moment were tested with UTM at three levels of loading rate and initial deflection ratio. Sample cucumber was selected from three cultivars of cucumber, Cheongjangmadi, Baekdadagi, and Gyeousalicheongjang, because these cultivars are the most popular grown cultivars in Korea. When the bending moment was applied to the cucumber sample, the effective span between simple supports was held a constant value of 116mm with consideration of the selected sample length. The objectives of this study were to develop the rheological models such as linear and nonlinear models of the stress relaxation for the cucumber samples, and to investigate the effects of loading rate and initial deflection ratio on the stress relaxation behavior of the cucumber. The results of this study may be summarized as follows : 1. Stress relaxation behavior of the cucumber could be well described by the generalized Maxwell model for each level of deflection ratio. But the stress relaxation behavior of the sample was found to be initial deflection ratio and time dependent, and it was represented the nonlinear viscoelastic model as a function of initial deflection ratio and time. 2. Stress relaxation behavior of the cucumber samples was very highly affected by the loading rate and the initial deflection ratio. The more loading rate and initial deflection ratio resulted in the more initial bending stress and after stress relaxation progressed more rapidly. 3. At the same test conditions, it was found that the stress relaxation rate of Cheongjangmadi was faster than that of other cultivars.

  • PDF

철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향 (Effects of Design on the Dynamic Response of Reinforced Concrete Slabs)

  • 오경윤;조진구;최수명;홍종현
    • 한국농공학회논문집
    • /
    • 제49권6호
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.