• Title/Summary/Keyword: deflection reduction

Search Result 234, Processing Time 0.03 seconds

Simulation of injection-compression molding for thin and large battery housing

  • Kwon, Young Il;Lim, Eunju;Song, Young Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1451-1457
    • /
    • 2018
  • Injection compression molding (ICM) is an advantageous processing method for producing thin and large polymeric parts in a robust manner. In the current study, we employed the ICM process for an energy-related application, i.e., thin and large polymeric battery case. A mold for manufacturing the battery case was fabricated using injection molding. The filling behavior of molten polymer in the mold cavity was investigated experimentally. To provide an in-depth understanding of the ICM process, ICM and normal injection molding processes were compared numerically. It was found that the ICM had a relatively low filling pressure, which resulted in reduced shrinkage and warpage of the final products. Effect of the parting line gap on the ICM characteristics, such as filling pressure, clamping force, filling time, volumetric shrinkage, and warpage, was analyzed via numerical simulation. The smaller gap in the ICM parting line led to the better dimensional stability in the finished product. The ICM sample using a 0.1 mm gap showed a 76% reduction in the dimensional deflection compared with the normal injection molded part.

Flexural Behavior of Encased Composite Beams with Partial Shear Interaction (매립형 불완전 합성보의 휨 거동 예측)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.747-757
    • /
    • 2004
  • With steel and concrete composite beams, the incomplete interaction between the steel and the concrete slab leads to an appreciable increase in beam deflections. Moreover, encased composite beams using a deep deck plate or hollow-core PC slabs are critical to deflection due to their inherent geometry. In this paper, by using the calculation tools that were developed for a previous study on the deflection of encased composite beams considering the slip effects and load-slip curve, the shear bond stress and additional deflection induced due to interface slip of the encased composite beam are presented. It was found that the slip effects significantly contribute to the encased composite beam deflections and result in stiffness reduction of up to 30% compared to that of full shear interaction beams. The predicted results were compared with the measurement of 18 specimens tested in this study, and comparisons show a high degree of accuracy, within 6%.

Improvement and Analysis of Stacking Durability of Corrugated Fiberboard Boxes for Agricultural Products -Moisture Absorption Properties and Compressive Strength Reduction- (농산물 포장용 골판지상자의 층적내구성의 분석과 향상에 관한 연구(I) -수분흡습특성과 압축강도열화-)

  • Park, J.M.;Kwon, S.H.;Kwon, S.G.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.358-368
    • /
    • 1994
  • Major factors in reducing the stacking strength of corrugated fiberboard boxes in cold storage or transport conditions are high relative humidity, causing elevated moisture absorption by the boxes. The bottom boxes in a stack will deform to the critical deflection causing agricultural products damage there, and eventually additional deflection will cause box collapse and finally toppling of the stack. The study was conducted to determine the water absorption characteristics and the compressive strength of the corrugated fiberboard boxes being widely used in packaging agricultural products in Korea. The sample boxes for the study were selected from the regular slotted containers (RSC) types, and one was the box used in apple packaging (Box A), another one was the box used in pear packaging (Box B). The corrugated shipping containers were made from a large portion of recycled fibers in Korea, and comparing with Box B, Box A was fabricated from fiberboard which contained more percentage of old corrugated containers (OCC) imported from foreign countries than domestic waste paper. The results obtained from the study were summarized as follows ; 1. Equilibrium moisture content (EMC) of the sample boxes was established after about 20 hours, and the EMC by absorption was lower than that by desorption. The EMC increased with the increasing of relative humidity and with the decreasing of temperature, and the rate of increasing was much higher above the relative humidity of 50%. 2. The maximum compressive strength of Box A was about 100 kgf greater than that of Box B on the same enviromental conditions. The strength of the sample boxes decreased rapidly with the increasing of relative humidity. The effect of relative humidity on the strength was a little higher than that of temperature. 3. As the applied load was progressively increased and a level was reached, the vertical side panels ($L{\times}D$) deflected laterally inwards or outwards. The panels deflected laterally inwards at higher relative humidity. 4. The maximum compressive deflection ratio and the critical deflection ratio of the sample boxes were increased linearly with the increasing of relative hunidity, but trends for its ratios showed inconsistant response to temperature.

  • PDF

Effective Stiffness of Composite Beams Considering Shear Slip Effects (전단슬립 효과를 고려한 합성보의 유효강성)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.671-682
    • /
    • 2004
  • This study investigated the effects of a shear slip on the deflection of steel-concretecomposite beams with partial shear interaction. Under the guidance of various current design codes, this deflection was related to the strength of shear connectors in the composite beams. In this paper, a shear connector stiffness based on exact solutions, regardless of loading conditions, was developed. The equivalent rigidity of composite beams that considered three different loading types was first derived, based on equilibrium and curvature compatibility, from which a general formula accounting for slips was developed. To validate this approach, the predicted maximum deflection under the proposed method was compared against currently used equations to calculate beam effective stiffness (AISC)Nie's equations, which have recently been proposed. For typical beams that were used in practice, shear slips might result in stiffness reduction of up to 18% for short-span beams. For full composite sections, the effective section modulus with the AISC specifications was larger than that of the present study, which meant that the specifications were not conservative. For partial composite sections, the AISC predictions were more conservative than those in the present study.

Secondary Buckling Behaviour of Plate under Inpane Compressive Loading (면내압축하중(面內壓縮荷重)을 받는 판(板)의 2차좌굴거동(次座屈擧動)에 관한 연구(硏究))

  • J.Y. Ko;T. Yao;J.K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.66-80
    • /
    • 1996
  • Recently, HT steel has been widely used in structure, and this enables to reduce the plate thickness. To use the HT steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behaviour of plat above primary buckling load is important. The plate under the load, that is called, secondary buckling load may undergo abrupt changes in wave form after primary buckling. This is very important when the collapse strength of the whole structures is considered. From this point of view, this paper discusses secondary buckling behaviour of thin plate under inplane compressive loading. A elastic large deflection analysis of plates with initial imperfection is performed assuming uniaxial compression, respectively, and the influence of secondary buckling is investigated. It is known that square plate is not influenced by non-symmetrical deflection coefficient but influenced by symmetrical deflection coefficient. Also, it has been found that rectangular plate($\alpha$=a/b) is influenced by all deflection coefficient, and the reduction of inplane stiffness of the plate after primary buckling is continued.

  • PDF

Load and Deflection Recovery Capacities of PSC Girder with Unbonded PS H-Type Steel

  • Kim, Jong Wook;Kim, Jang-Ho Jay;Kim, Tae-Kyun;Lee, Tae Hee;Yang, Dal Hun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1336-1349
    • /
    • 2018
  • Generally, a precast prestressed concrete (PSC) beam is used as girders for short-to-medium span (less than 30 m) bridges due to the advantages of simple design and construction, reduction of construction budget, maintenance convenience. In order to increase the span length beyond 50 m of precast PSC girder, PSC hollow box girder with unbonded prestressed H-type steel beam placed at the compressive region is proposed. The unbonded compressive prestressing in the H-type steel beams in the girder is made to recover plastic deflection of PSC girder when the pre-stressing is released. Also, the H-steel beams allow minimization of depth-to-length ratio of the girder by reducing the compressive region of the cross-section, thereby reducing the weight of the girder. A quasi-static 3-point bending test with 4 different loading steps is performed to verify safety and plastic deflection recovery of the girder. The experimental results showed that the maximum applied load exceeded the maximum design load and most of the plastic deflection was recovered when the compressive prestressing of H-type steel beams is released. Also using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and restoration difficulty and cost of PSC girders should be significantly reduced. The study result and analysis are discussed in detail in the paper.

Lateral Stiffness of Steel Moment Frames Having Dogbone Seismic Connection (독본(dogbone) 내진접합부를 갖는 철골 모멘트골조의 횡강성 평가)

  • 이철호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.639-647
    • /
    • 2002
  • A simplified analytical procedure is presented to estimate the reduction of elastic lateral stiffness of steel moment frames arising from the radius-cut dogbone weakening. With the original radius-cut dogbone shape, it is almost impossible or too complicated to integrate analytically the mathematical expressions encountered when applying the conjugate beam method to compute the beam deflection component. In this study, the problem is circumvented by replacing the original radius-cut dogbone with an equivalent dogbone of constant width. The equivalence between the two is established by imposing an equal dogbone elongation criterion. This approach is justified by using a calibrated finite clement analysis. Then, the elastic lateral deflection components from the column, panel zone, and beam are derived for a typical beam-column subassembly. The derived results can be used to evaluate the reduction of the frame lateral stiffness. Case studies conducted within some practical ranges of frame configurations show that the reduction in frame lateral stiffness due to the presence of dogbone cut is on the order of 1 to 2 percent and is reasonably negligible in practical sense.

The Influence of Flashover Characteristics Caused by Combustion Flames (연소화염이 플래시오버 특성에 미치는 영향)

  • 김인식;김이국;박재용;이상우;김충년;지승욱
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.193-197
    • /
    • 2001
  • In this paper, reduction characteristics of the ac flashover voltage in the horizontal air gap of sphere-sphere and needle-needle electrode system were investigated when the combustion flame was present near the high-voltage electrodes. The reduction characteristics of ac flashover voltage were discussed with thermal ionization process, the relative air density and the deflection phenomena in the shape of flames that changed by the corona wind and coulomb's force. As the results of an experimental, It was found that the reduction of flashover voltage in sphere-sphere system, in comparison with the no-flame case, are 79.9 [%] for k=0, 82.9 [%] for k=0.5, 87.5 [%] for k=1.0, 85.0 [%] for h=0 [cm], 40.8 [%] for h=5 [cm] and 28.2 [%] for h=9 [cm] when ac voltage is applied.

  • PDF

Evaluation and analytical approximation of Tuned Mass Damper performance in an earthquake environment

  • Tributsch, Alexander;Adam, Christoph
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.155-179
    • /
    • 2012
  • This paper aims at assessing the seismic performance of Tuned Mass Dampers (TMDs) based on sets of recorded ground motions. For the simplest configuration of a structure-TMD assembly, in a comprehensive study characteristic response quantities are derived and statistically evaluated. Optimal tuning of TMD parameters is discussed and evaluated. The response reduction by application of a TMD is quantified depending on the structural period, inherent damping of the stand-alone structure, and ratio of TMD mass to structural mass. The effect of detuning on the stroke of the TMD and on the structural response is assessed and quantified. It is verified that a TMD damping coefficient larger than the optimal one reduces the peak deflection of the TMD spring significantly, whereas the response reduction of the main structure remains almost unaffected. Analytical relations for quantifying the effect of a TMD are derived and subsequently evaluated. These relations allow the engineer in practice a fast and yet accurate assessment of the TMD performance.

NOISE REFINEMENT OF A VEHICLE BY REDUCTION OF THE AXLE GEAR WHINE NOISE BASED ON STRUCTURAL MODIFICATION USING FEM AND BEM

  • Kim, S.J.;Lee, J.Y.;Lee, S.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.605-614
    • /
    • 2007
  • This paper presents the research results for the reduction of a gear whine noise based on experimental and analytic methods. The test vehicle has a whine noise problem at the passenger seats in a sport utility vehicle. To identify the transfer path of the interior noise due to the axle system, a vibration path analysis, modal analysis and operational deflection shape analysis are systematically employed. By using these various methods, it has been found that the interior noise generated by the axle system was airborne noise. To reduce and predict the whine generated by the axle system, structural modifications for the axle system are performed by using FEM and BEM techniques. The structural modification of the axle cover is suggested for the reduction of whine noise.