DOI QR코드

DOI QR Code

Simulation of injection-compression molding for thin and large battery housing

  • Kwon, Young Il (Department of Fiber System Engineering, Dankook University) ;
  • Lim, Eunju (Department of Science Education/Creative Convergence Manufacturing Engineering, Dankook University) ;
  • Song, Young Seok (Department of Fiber System Engineering, Dankook University)
  • Received : 2018.06.12
  • Accepted : 2018.08.30
  • Published : 2018.11.30

Abstract

Injection compression molding (ICM) is an advantageous processing method for producing thin and large polymeric parts in a robust manner. In the current study, we employed the ICM process for an energy-related application, i.e., thin and large polymeric battery case. A mold for manufacturing the battery case was fabricated using injection molding. The filling behavior of molten polymer in the mold cavity was investigated experimentally. To provide an in-depth understanding of the ICM process, ICM and normal injection molding processes were compared numerically. It was found that the ICM had a relatively low filling pressure, which resulted in reduced shrinkage and warpage of the final products. Effect of the parting line gap on the ICM characteristics, such as filling pressure, clamping force, filling time, volumetric shrinkage, and warpage, was analyzed via numerical simulation. The smaller gap in the ICM parting line led to the better dimensional stability in the finished product. The ICM sample using a 0.1 mm gap showed a 76% reduction in the dimensional deflection compared with the normal injection molded part.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. M.H. Blees, G.B. Winkelman, A.R. Balkenende, J.M.J. den Toonder, The effect of friction on scratch adhesion testing: application to a sol-gel coating on polypropylene, Thin Solid Films 359 (2000) 1-13. https://doi.org/10.1016/S0040-6090(99)00729-4
  2. B.J. Briscoe, A. Delfino, E. Pelillo, Single-pass pendulum scratching of poly(styrene) and poly(methylmethacrylate), Wear 225-229 (1999) 319-328. https://doi.org/10.1016/S0043-1648(99)00051-4
  3. H.J. Oh, D.J. Lee, C.G. Lee, K.Y. Jo, D.H. Lee, Y.S. Song, J.R. Youn, Warpage analysis of a micro-molded parts prepared with liquid crystalline polymer based composites, Composites Part A 53 (2013) 34-45. https://doi.org/10.1016/j.compositesa.2013.06.006
  4. H.L. Chen, S.C. Chen, W.H. Liao, R.D. Chien, Y.T. Lin, Effects of insert film on asymmetric mold temperature and associated part warpage during in-mold decoration injection molding of PP parts, Int. Commun. Heat Mass Tran. 41 (2013) 34-40. https://doi.org/10.1016/j.icheatmasstransfer.2012.11.002
  5. S. Hong, J. Hwang, J. Kang, K. Yoon, Comparison of injection molding and injection/ compression molding for the replication of microstructure, Korea Aust. Rheol. J. 27 (2015) 309-317. https://doi.org/10.1007/s13367-015-0030-z
  6. L. Yu, C.G. Koh, L.J. Lee, K.W. Koelling, M.J. Madou, Experimental investigation and numerical simulation of injection molding with micro-features, Polym. Eng. Sci. 42 (2002) 871-888. https://doi.org/10.1002/pen.10998
  7. D. Teixeira, M. Giovanela, L.B. Gonella, J.S. Crespo, Influence of injection molding on the flexural strength and surface quality of long glass fiber-reinforced polyamide 6.6 composites, Mater. Des. 85 (2015) 695-706. https://doi.org/10.1016/j.matdes.2015.07.097
  8. H.J. Oh, Y.S. Song, S.H. Kim, S.Y. Kim, J.R. Youn, Fluid-structure interaction analysis on the film wrinkling problem of a film insert molded part, Polym. Eng. Sci. 51 (2011) 812-818. https://doi.org/10.1002/pen.21886
  9. H.J. Oh, Y.S. Song, Precise nanoinjection molding through local film heating system, RSC Adv. 5 (2015) 99797-99805. https://doi.org/10.1039/C5RA20206J
  10. C. Weng, W.B. Lee, S. To, Birefringence techniques for the characterization of residual stresses in injection-moulded micro-lens arrays, Polym. Test. 28 (2009) 709-714. https://doi.org/10.1016/j.polymertesting.2009.06.007
  11. H. Yokoi, X. Han, T. Takahashi, W.K. Kim, Effects of molding conditions on transcription molding of microscale prism patterns using ultra-high-speed injection molding, Polym. Eng. Sci. 46 (2006) 1140-1146. https://doi.org/10.1002/pen.20519
  12. W.S. Guan, H.X. Huang, Back melt flow in injection-compression molding: effect on part thickness distribution, Int. Commun. Heat Mass Tran. 39 (2012) 792-797. https://doi.org/10.1016/j.icheatmasstransfer.2012.04.012
  13. I. Min, K. Yoon, An experimental study on the effects of injection-molding types for the birefringence distribution in polycarbonate discs, Korea Aust. Rheol. J. 23 (2011) 155. https://doi.org/10.1007/s13367-011-0019-1
  14. S.C. Chen, Y.C. Chen, N.T. Cheng, M.S. Huang, Simulation of injection-compression mold-filling process, Int. Commun. Heat Mass Tran. 25 (1998) 907-917. https://doi.org/10.1016/S0735-1933(98)00082-7
  15. W.B. Young, Effect of process parameters on injection compression molding of pickup lens, Appl. Math. Model. 29 (2005) 955-971. https://doi.org/10.1016/j.apm.2005.02.004
  16. D. Ljubic, M. Stamenovic, C. Smithson, M. Nujkic, B. Medo, S. Putic, Time - temperature superposition principle - application of WLF equation in polymer analysis and composites, Zastita Materijala 55 (2014) 395-400. https://doi.org/10.5937/ZasMat1404395L
  17. C.H. Wu, W.S. Chen, Injection molding and injection compression molding of threebeam grating of DVD pickup lens, Sensor Actuator Phys. 125 (2006) 367-375. https://doi.org/10.1016/j.sna.2005.07.025
  18. H. Ming-Shyan, C. Chin-Feng, Injection molding and injection compression molding of thin-walled light-guided plates with V-grooved microfeatures, J. Appl. Polym. Sci. 121 (2011) 1151-1159. https://doi.org/10.1002/app.33603
  19. G. Wei-Sheng, H. Han-Xiong, W. Ze, Manipulation and online monitoring of microreplication quality during injection-compression molding, J. Micromech. Microeng. 22 (2012) 115003. https://doi.org/10.1088/0960-1317/22/11/115003
  20. S. Aid, A. Eddhahak, Z. Ortega, D. Froelich, A. Tcharkhtchi, Experimental study of the miscibility of ABS/PC polymer blends and investigation of the processing effect, J. Appl. Polym. Sci. 134 (2017).
  21. J.H. Chun, K.S. Maeng, K.S. Suh, Miscibility and synergistic effect of impact strength in polycarbonate/ABS blends, J. Mater. Sci. 26 (1991) 5347-5352. https://doi.org/10.1007/BF01143232
  22. O.O. Santana, M.L. Maspoch, A.B. Martizez, Polycarbonate/acrylonitrile-butadienestyrene blends: miscibility and interfacial adhesion, Polym. Bull. 41 (1998) 721-728. https://doi.org/10.1007/s002890050424
  23. S.J. Baek, S.Y. Kim, S.H. Lee, J.R. Youn, S.H. Lee, Effect of processing conditions on warpage of film insert molded parts, Fibers Polym. 9 (2008) 747-754. https://doi.org/10.1007/s12221-008-0117-y

Cited by

  1. TiO2, Carbonblack 및 POE로 보강된 열가소성 PETG 복합재료의 특성 vol.31, pp.4, 2018, https://doi.org/10.5764/tcf.2019.31.4.354
  2. PETG/POE 열가소성 복합재료의 특성평가 및 전산해석 vol.32, pp.6, 2018, https://doi.org/10.7234/composres.2019.32.6.360
  3. Experimental and numerical study on HDPE/SWCNT nanocomposite elastic properties considering the processing techniques effect vol.26, pp.8, 2018, https://doi.org/10.1007/s00542-020-04784-y