• Title/Summary/Keyword: deflection line

Search Result 141, Processing Time 0.026 seconds

A Case Study on Efficiency Analysis of Cable Logging Operation in Korea (국내 가선집재 작업의 효율성 분석에 관한 사례연구)

  • You, JoungWon;Han, Hee;Chung, JooSang
    • Journal of agriculture & life science
    • /
    • v.53 no.6
    • /
    • pp.35-44
    • /
    • 2019
  • The objectives of this study were to identify engineering problems in the design and installation of cable logging operation that affects productivity through case study of actual logging sites, and to analyze associated productivity loss and increased cost. As a result of the study, when the geographic conditions and engineering safety of the site are not sufficiently considered, deflection of the cable line can not be secured. Hourly productivity of the operation decreased to 65% and the logging cost increased by more than two times compared to the productive yarding operation, which lowered overall efficiency of the operation. Thus, it is required to spread filed technologies that minimize unnecessary production cost incurred due to the in-efficient logging operations as well as secure work safety and efficiency to expand cable logging operation throughout the country.

Electric Power Line Dips Measurement Using Drone-based Photogrammetric Techniques (드론 기반 사진측량기법을 활용한 고압 송전선의 처짐량 측정)

  • Kim, Yu Jong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.453-460
    • /
    • 2017
  • High voltage power transmission lines have been to keep the proper dip for maintenance. Powerline dips at a random point are conventionally measured by the direct or indirect observation but it is not only unsafe but labor-intensive. Therefore in this study we applied the photogrammetric technique to remotely measure the powerline dips. Since it is not easy to extract conjugate points from linear powerlines, we exploited the epipolar lines acrossing the powerlines for 3D mapping of the powerlines and dip measurements. The vertical mapping accuracy estimated at two field-surveyed power line points was 15~16cm that are within 5% of deflection at the points and less than 3% of the powerline dip.

Large Deflection and Elastoplastic Analysis of the Plane Framed Structure Using Isoparametric Curved Beam Element (Isoparametric 곡선(曲線) 보요소(要素)를 이용한 평면(平面)뼈대 구조물(構造物)의 대변형(大變形) 및 탄소성(彈塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Shin, Hyun Mock;Lee, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 1993
  • This paper presents a geometrically non-linear and elastoplastic F.E. formulation using a total Lagrangian approach for the two dimensional isoparametric curved beam elements. The beam element is derived by using plane stress elements. The basic element geometry is constructed using the coordinates of the nodes on the element center line and the nodal point normals. The element displacement field is described using two translations of the node on the center line and a rotation about the axes normal to the plane containing the center line of the element. The layered approach is used for the elastoplastic analysis of the plane framed structure with the arbitrary cross section. The iterative load or displacement incremental method for non-linear finite element analysis of the frame structure is used. Numerical examples are presented to demonstrate the behavior and the accuracy of the proposed beam element for geometric and elastoplastic non-linear applications. Comparisons made with present theory and other published data show that tilt' beam element products accurate results with good convergence characteristics.

  • PDF

A systematic method from influence line identification to damage detection: Application to RC bridges

  • Chen, Zhiwei;Yang, Weibiao;Li, Jun;Cheng, Qifeng;Cai, Qinlin
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.563-572
    • /
    • 2017
  • Ordinary reinforced concrete (RC) and prestressed concrete bridges are two popular and typical types of short- and medium-span bridges that accounts for the vast majority of all existing bridges. The cost of maintaining, repairing or replacing degraded existing RC bridges is immense. Detecting the abnormality of RC bridges at an early stage and taking the protective measures in advance are effective ways to improve maintenance practices and reduce the maintenance cost. This study proposes a systematic method from influence line (IL) identification to damage detection with applications to RC bridges. An IL identification method which integrates the cubic B-spline function with Tikhonov regularization is first proposed based on the vehicle information and the corresponding moving vehicle induced bridge response time history. Subsequently, IL change is defined as a damage index for bridge damage detection, and information fusion technique that synthesizes ILs of multiple locations/sensors is used to improve the efficiency and accuracy of damage localization. Finally, the feasibility of the proposed systematic method is verified through experimental tests on a three-span continuous RC beam. The comparison suggests that the identified ILs can well match with the baseline ILs, and it demonstrates that the proposed IL identification method has a high accuracy and a great potential in engineering applications. Results in this case indicate that deflection ILs are superior than strain ILs for damage detection of RC beams, and the performance of damage localization can be significantly improved with the information fusion of multiple ILs.

Analysis for A Partially Loaded Orthotropic Plate And Development of Computer Program (부분하중을 받는 이방성 평판의 해석 및 컴퓨터 프로그램의 개발)

  • See, Sang Kwang;Kim, Jin Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • In this study, an exact solution of governing differential equation for the bending problem of partially loaded orthotropic rectangular plates is presented and also its computer program is developed. The method requires that two opposite edges be clamped or simply supported, or one edge clamped and the other simply supported. Any combination of boundary conditions could exist along the other edges. The plate could he subjected to uniform, partially uniform, and line loads. The solution for the deflection of rectangular plate is expressed as a Levy type single Fourier series and the loads arc expressed as a corresponding series. The advantage of the solution is that it overcomes the limitations of the previous Navier's and Levy's methods (limitation of boundary condition and loading conditions of plate), it is easy to program on a computer and it becomes fast to solve the bending problem with computer program. Calculations are presented for isotropic and orthotropic plates with different loading and boundary conditions. Comparisons are made for the isotropic plate with various boundary conditions between the result of this paper and the result of Navier, Levy and Szilard. The deflections were in excellent agreement.

  • PDF

A Numerical Study on the Maneuverability of a Twin-Screw LNG Carrier under Single Propeller Failure (쌍축 추진 LNG선의 단독 추진기 고장 상태에서의 조종성능에 대한 수치적 연구)

  • You, Youngjun;Choi, Jinwoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.204-214
    • /
    • 2017
  • Recently, ship owners have been requiring the assessment of the maneuverability of a twin-screw ship under machinery failures. In this paper, we are only focused on the propulsion failure among propulsion failure, power supply failure, steering system failure etc. First of all, the mathematical model for the twin-screw 174K LNGC is verified by comparing the simulated results for $35^{\circ}$ turning test, $10^{\circ}/10^{\circ}$ zigzag test and $20^{\circ}/20^{\circ}$ zigzag test under normal operating condition and those obtained from free running model tests. And, sea trial results of 216K LNGC under single propeller failure are compared with those of 174K LNGC under identical condition to verify the proposed method to predict maneuverability under single propeller failure. After the straight line maneuver is simulated under the single propeller failure, the speed and equilibrated heading and rudder deflection angles at steady state are predicted. After the IMO maneuvering tests are simulated under the single propeller failure, the results are reviewed to investigate the maneuvering characteristics due to the failure.

Contact buckling behaviour of corrugated plates subjected to linearly varying in-plane loads

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.333-348
    • /
    • 2018
  • An analytical method is developed for analysing the contact buckling response of infinitely long, thin corrugated plates and flat plates restrained by a Winkler tensionless foundation and subjected to linearly varying in-plane loadings, where the corrugated plates are modelled as orthotropic plates and the flat plates are modelled as isotropic plates. The critical step in the presented method is the explicit expression for the lateral buckling mode function, which is derived through using the energy method. Simply supported and clamped edges conditions on the unloaded edges are considered in this study. The acquired lateral deflection function is applied to the governing buckling equations to eliminate the lateral variable. Considering the boundary conditions and continuity conditions at the border line between the contact and non-contact zones, the buckling coefficients and the corresponding buckling modes are found. The analytical solution to the buckling coefficients is also expressed through a fitted approximate formula in terms of foundation stiffness, which is verified through previous studies and finite element (FE) method.

The Tip Position Measurement of a Flexible Robot Arm Using a Vision Sensor (비전 센서를 이용한 유연한 로봇팔의 끝점 위치 측정)

  • Shin, Hyo-Pil;Lee, Jong-Kwang;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.682-688
    • /
    • 2000
  • To improve the performance of a flexible robot arm one of the important things is the vibration displacement measurement of a flexible arm. Many types of sensors have been used to measure it, The most popular has been strain gauges which measures the deflection of the beam,. Photo sensors have also been for detecting beam displacement and accelerometers are often used to measure the beam vibration. But the vibration displacement can be obtained indirectly from these sensors. In this article a vision sensor is used as a displacement sensor to measure the vibration displacement of a flexible robot arm. Several schemes are proposed to reduce the image processing time and increase its accuracy. From the experimental results it is seen that the vision sensor can be an alternative sensor for measuring the vibration displacement and has a potential for on-line tip position control of flexible robot systems.

  • PDF

A Combined Bearing Arrangement for High Damping Spindle Systems (고감쇠 주축 시스템을 위한 베어링의 복합배열에 관한 연구)

  • Lee, C.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.139-145
    • /
    • 1996
  • The machining accuracy and performance is largely influenced by the static, dynamic and thermal characteristics of spindle systems in machine tools, because the spindle system is a intermedium for cutting force from tool and machine powef from motor. Large cutting force and power are transmitted by bearing with a point or line contact. So, the spindle system is the static and dynamic weakest point in machine structure. For improvement of static stiffness of spindle system can be changed design parameters, such as diameter of spindle, stiffness of bearing and bearing span. But for dynamic stiffness, the change of the design parameters are not useful. In this paper, the combined bearing arrangement is suggested for high damping spindle system. The combined bearing arrangement is composed of tandem double back to back arrangement type ball bearins and a high damping hydrostatic bearing. The variation of static deflection and amplitude in first natural frequency is evaluated with the location of hydrostatic bearing between front and rear ball bearing. The optimized location of hydrostatic bearing for high static and dynamic stiffness is determined rapidly and exactly using the mode shape and transfer function of spindle. The calculation of damping effect on vibration by unbalance of grinding wheel and pulley in optimized spindle system is carried out to verify the validity of the combined bearing arrangement. Finally, the simulation of grinding process show that the surface roughness of workpiece with high damping spindle system is 60% better than with ball bearing spindle system.

  • PDF

Some precautions to consider in using wavelet transformation for damage detection analysis of plates

  • Beheshti-Aval, S.B.;Taherinasab, M.;Noori, M.
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.35-51
    • /
    • 2013
  • Over the last two decades Wavelet Transformation (WT) method has been widely utilized for the damage identification of structures. The main objective of this paper is to discuss and present some of common shortcomings and limitations of mathematical software, as well as other precautionary measures that need to be considered when using them for wavelet analysis applications. Due to popular usage of MATLABMATLAB(R) comparing to other mathematical tools among researchers for data processing of structural responses through WT analysis, this software was chosen for specific study. To the best of the authors' knowledge, these limitations and observations have not been previously identified or discussed in the literature. In this work, a square plate with a severe damage, in form of a crack, parallel to the left edge of the plate is selected for a pilot study. The steady state harmonic response is used for measuring the deflection shape across the line parallel to one edge and perpendicular to the damage. Several criteria and cases such as the smallest size damage that can be detected, correlation between the crack width and the number of sampling points, and the influence of the damage thickness on the accuracy of the result are investigated.