• Title/Summary/Keyword: deflection analysis

Search Result 1,712, Processing Time 0.028 seconds

Effects of Partially Distributed Loads on Dynamic Response of Plane Parabolic Arch (부분분포하중이 평면 포물선아치의 동적응답에 마치는 영향)

  • Cho, Jin-Goo;Park, Keun-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.21-28
    • /
    • 2004
  • This study aims to investigate the effects of partially distributed loads on the dynamic behaviour of steel parabolic arches by using the elasto-plastic finite element model based on the Von Mises yield criteria and the Prandtl-Reuss How rule. For this purpose, the vertical and the radial load conditions were considered as a distributed loading and the loading range is varied from 40% to 100% of arch span. Normal arch and arch with initial deflection were studied. The initial deflection of arch was assumed by the sinusoidal motile of ${\omega}_i\;=\;{\\omega}_O$ sin ($n{\pi}x/L$). Several numerical examples were tested considering symmetric initial deflection when the maximum initial deflection at the apex is fixed as L/1000. The analysis resluts showed that the maximum deflection at the apex of arch was occurred when 70% of arch span was loaded. The maximum deflection at the quarter point of arch span was occurred when 50% of arch span was loaded. It is known that the optimal rise to span ratio between 0.2 and 0.3 when the vertical or radial distributed load is applied. It is verified that the influence of initial deflection of radial load case is more serious than that of vertical load case.

Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.155-163
    • /
    • 2018
  • The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

A Compensation Control Method Using Neural Network for Mechanical Deflection Error in SCARA Robot with Random Payload

  • Lee, Jong Shin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.7-16
    • /
    • 2011
  • This study proposes the compensation method for the mechanical deflection error of a SCARA robot. While most studies on the related subject have dealt with the development of a control algorithm for improvement of robot accuracy, this study presents the control method reflecting the mechanical deflection error which is predicted in advance. The deflection at the end of the gripper of SCARA robot is caused by the self-weights and payloads of Arm 1, Arm 2 and quill. If the deflection is constant even though robot's posture and payload vary, there may not be a big problem on robot accuracy because repetitive accuracy, that is relative accuracy, is more important than absolute accuracy in robot. The deflection in the end of the gripper varies as robot's posture and payload change. That's why the moments $M_x$, $M_y$ and $M_z$ working on every joint of a robot vary with robot's posture and payload size. This study suggests the compensation method which predicts the deflection in advance with the variations in robot's posture and payload using neural network. To do this, I chose the posture of robot and the payloads at random, found the deflections by the FEM analysis, and then on the basis of this data, made compensation possible by predicting deflections in advance successively with the variations in robot's posture and payload through neural network learning.

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

Evaluation of the Deflection of Reinforced Concrete Half Slabs with Ribs (철근콘크리트 리브형 하프슬래브의 처짐 평가법)

  • Park, Jong-Wook;Kim, Min-Ok;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.37-38
    • /
    • 2010
  • The deflection of RC half slabs with rids was much smaller than that of the conventional RC half slabs. In this study, the deflection of RC half slabs with rids was calculated by using a FE method and a elastic analysis. The deflections predicted by the FE method and the elastic analysis predicted the deflection measured by tested slabs with reasonable agreement.

  • PDF

Analysis of Air Foil Bearing using Influence Coefficients of a Bump Foil (포일변형 영향계수를 이용한 공기포일베어링 해석)

  • Kim Young-Cheol;Lee Dong-Hyun;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents the influence coefficient method to predict the deflection of bump foil precisely in the sub-structure of AFB(air foil bearing). Heshmat has introduced the simple compliance model to calculate the deflection of bump foil. But this approach can not consider the deflection of bump foil at the edge of AFB, so elasto-hydrodynamic model is insufficient to analyze in case that the eccentricity ratio is greater than 1. Peng has used the average pressure and film thickness, but this approach is not also a realistic model. Influence coefficients of a bump is calculated by finite element method, and introduced in bump deflection equations of the performance analysis of air foil bearing. The effects of the influence coefficient on the bearing performance is discussed in detail for appropriate foil design.

The Stiffness Analysis of Circular Plate Regarding the Area Change of Both Ends Constructing Supporting Conditions (원형평판의 지지조건을 구성하는 양 끝단의 면적변화에 따른 강성도 해석)

  • 한근조;안찬우;김태형;안성찬;심재준;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.908-911
    • /
    • 2002
  • This paper investigates the characteristics of deflection for circular plate that has same supporting condition along the width direction of plate according to the area change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting part to radius of circular plate.

  • PDF

A Study on the Springback for Three Point Bending (3점 굽힘에서의 스프링백에 관한 연구)

  • 이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.401-414
    • /
    • 1994
  • Springback for the three point bending is anlayzed and experimented. Neutral axis is assumed to remain at the midthickness for large ratio of radius of curvature to thickness. Pure bending theory is used to be extended to the analysis of the springback for three point bending. The specimen is thought to be divided into numerous small elements. The theory for pure bending is then adopted for analysis of each element to obtain springback in terms of the relationship between initial and final deflections. the boundary conditions between neighborhood elements are the deflection and slope which should be the same. Deflection is calculated by summing up the deflections of each element. Experiments have been performed for different conditions which are punch radius, span length, and initial deflections. Comparisons between the analytical solution and experimental results show the same trends.

  • PDF

Analysis for Large Deflection Behaviour of Plate Elements -Development and Application of Incremental Galerkin Method- (판요소의 탄성 대처짐 거동해석에 관한 연구 -증분 Galerkin법의 개발 및 응용-)

  • Jeom-Kee,Paik
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.37-44
    • /
    • 1987
  • In order to perform a detailed analysis of large deflection behaviour of a rectangular plate, an efficient semi-analytical method is developed in this paper. The method is called Incremental Galerkin Method. This method is successfully applied to plates with initial deflection subjected to in-plane and out-of-plane loads to obtain the whole histories of the behaviour of these plates. Application of this method to rectangular plates with initial deflection is presented. Comparisons of results obtained by this method with those obtained by other methods are made and the validity of the method is demonstrated.

  • PDF

The Stiffness Analysis of Circular Plate Regarding the Length of Supporting End Using Elastic Beam Theory (탄성보 이론을 적용한 원형평판의 지지단길이 변화에 따른 강성도 해석)

  • 한동섭;한근조;심재준;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.109-116
    • /
    • 2004
  • This paper investigates the characteristics of deflection for circular plate that has same supporting boundary condition along the width direction of plate according to the length change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting end to radius of circular plate.