• Title/Summary/Keyword: defining equations

Search Result 50, Processing Time 0.026 seconds

Automated Body-Fitted Grid Generation Method with Application to Natural Convection Problem (자동화된 경계고정좌표 생성법과 자연대류 문제에 대한 적용)

  • Choi, IL Kon;Maeng, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.703-712
    • /
    • 1999
  • This paper suggests an automatic elliptic grid generation method that is well-suited for the numerical mapping of complex geometries which are easily obtained from general CAD programs. An LBLADI solver is used for the governing mapping equations to have the strong diagonal dominance. The full boundary control method is adopted to determine the control functions of the equations, which allows the control of the grid regarding spacing and angle control at all boundary surfaces. The solution method presented here provides the capability of mapping very complicated geometries by defining grid point locations only along the boundaries. In the automated elliptic grid generation procedure, it is showed that strong diagonal dominance is essential to achieve successful mapping irrespective of the initial grid condition provided. To demonstrate the robustness of this method, it is applied to the thermal flow like the natural convection between eccentric cylinders. The results agree well with others.

Proposed Limit State Design Method for Encased Composite Columns (매립형 합성기둥의 한계상태설계법 제안)

  • Kim, WonKi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.523-533
    • /
    • 1997
  • Current limit state design method for encased composite columns contains irrational and uncertain design equations in defining section and material properties of composite members. Through investigating previous research used in formulating the design equation, this paper explores the irrationality and uncertainty such as 1) transformation of yield stress and elastic modulus for composite section, 2) an equation influencing buckling strength in terms of area rather than moment of inertia, and 3) selection of larger radius of gyration between steel and concrete sections. Improving the design equations this paper proposes two design methods which can be directly used in practical design.

  • PDF

Simulation of the gas exchange process for single-cylinder 4-stroke cycle spark ignition engine (단기통 4사이클 스파아크 점화기관 흡.배기 과정의 시뮬레이션)

  • 윤건식;유병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.24-34
    • /
    • 1985
  • The study of unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 4-stroke cycle spark ignition engine is presented in this paper. The generalized method of characteristics including friction, heat transfer, change of flow area and entropy gradients was used for solving the equations defining the gas exchange process. The path line calculation was also conducted to allow for calculation of the gas composition and entropy change along the path lines, and of the variable specific heat due to the change of temperature and composition. As the result of the simulation, the properties at each point in the inlet and exhaust pipe, pressure and temperature in the cylinder, and charging efficiency were obtained. Pumping loss and residual gas fraction were also computed. The effect of engine speed, exhaust and inlet pipe length on the pumping loss and charging efficiency were studied showing that the results were in agreement with what has been known from experiments.

  • PDF

A New Method of Collision Mode Evolution for Three-Dimensional Rigid Body Impact With Friction

  • Park, Jong-Hoon;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1769-1775
    • /
    • 2004
  • In presence of collision between two rigid bodies, they exhibit impulsive behavior to generate physically feasible state. When the frictional impulse is involved, collision resolution can not be easily made based on a simple Newton's law or Poisson's law, mainly due to possible change of collision mode during collision, For example, sliding may change to sticking, and then sliding resumes. We first examine two conventional methods: the method of mode evolution by differential equation, and the other by linear complementarity programming. Then, we propose a new method for mode evolution by solving only algebraic equations defining mode changes. Further, our method attains the original nonlinear impulse cone constraint. The numerical simulation will elucidate the advantage of the proposed method as an alternative to conventional ones.

  • PDF

3-D Model-based UAV Path Generation for Visual Inspection of the Dome-type Nuclear Containment Building (UAV를 이용한 돔형 원자력 격납건물 외관조사를 위한 3차원 모델기반 비행 좌표 생성 방법)

  • Kim, Bong-Geun
    • Journal of KIBIM
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • This paper provides a method for generating flight path of Unmanned Aerial Vehicle (UAV) that is intended to be used in visual inspection of dome-type nuclear containment building. The method basically employs 3-D model to extract accurate location coordinates. Two basic route patterns that provide guide lines in defining moving locations were defined for each side wall and dome section of the containment. The route patterns support sequential capturing of images as well. In addition, several simple equations and an algorithm for calculation of the moving location on the route were developed on the basis of 3-D geometric characteristics of the containment building. A prototype computer program has been implemented to validate the proposed method, and a case study shows the method can visualize covering area in 3-D model as well.

GEOMETRIC ANALYSIS ON THE DIEDERICH-FORNÆSS INDEX

  • Krantz, Steven George;Liu, Bingyuan;Peloso, Marco Maria
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.897-921
    • /
    • 2018
  • Given bounded pseudoconvex domains in 2-dimensional complex Euclidean space, we derive analytical and geometric conditions which guarantee the Diederich-$Forn{\ae}ss$ index is 1. The analytical condition is independent of strongly pseudoconvex points and extends $Forn{\ae}ss$-Herbig's theorem in 2007. The geometric condition reveals the index reflects topological properties of boundary. The proof uses an idea including differential equations and geometric analysis to find the optimal defining function. We also give a precise domain of which the Diederich-$Forn{\ae}ss$ index is 1. The index of this domain can not be verified by formerly known theorems.

Steel nitriding optimization through multi-objective and FEM analysis

  • Cavaliere, Pasquale;Perrone, Angelo;Silvello, Alessio
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2016
  • Steel nitriding is a thermo-chemical process leading to surface hardening and improvement in fatigue properties. The process is strongly influenced by many different variables such as steel composition, nitrogen potential, temperature, time, and quenching media. In the present study, the influence of such parameters affecting physic-chemical and mechanical properties of nitride steels was evaluated. The aim was to streamline the process by numerical-experimental analysis allowing defining the optimal conditions for the success of the process. Input parameters-output results correlations were calculated through the employment of a multi-objective optimization software, modeFRONTIER (Esteco). The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated, through control designs, and optimized by taking into account physical and processing conditions.

Impact of uncertain natural vibration period on quantile of seismic demand

  • Hong, H.P.;Wang, S.S.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.357-372
    • /
    • 2008
  • This study investigates effect of uncertainty in natural vibration period on the seismic demand. It is shown that since this uncertainty affects the acceleration and displacement responses differently, two ratios, one relating peak acceleration responses and the other relating the peak displacement responses, are not equal and both must be employed in evaluating and defining the critical seismic demand. The evaluation of the ratios is carried out using more than 200 strong ground motion records. The results suggest that the uncertainty in the natural vibration period impacts significantly the statistics of the ratios relating the peak responses. By using the statistics of the ratios, a procedure and sets of empirical equations are developed for estimating the probability consistent seismic demand for both linear and nonlinear systems.

The effects of gas flow in intake and exhaust system on volumetric efficiency (흡배기계의 가스유동이 체적효율에 미치는 영향)

  • 조진호;김병수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.57-65
    • /
    • 1988
  • The study of unsteady gas exchange processes in the intake and exhaust systems of four-cylinder, four-stroke cycle internal combustion engine is described in this paper. The calculation model for the intake and exhaust systems is established and solved by the characteristic method for the equations defining these systems. A constant pressure theory is used for modeling branches of intake and exhaust manifolds. The relationship between the volumetric efficiency and the intake, exhaust pressure variation is clarified by simulation of these systems. It is found that the volumetric efficiency mainly depends on the intake pressure during the short period before the intake valves is closed, that the volumetric efficiency is influenced a little by intake chamber volume in the intake and exhaust system.

  • PDF

A Formulation of the Differential Equation on the Equations of Motion and Dynamic Analysis for the Constrained Multibody Systems (구속된 다물체 시스템에 대한 운동 방정식의 미분 방정식화 및 동역학 해석)

  • 이동찬;이상호;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.154-161
    • /
    • 1997
  • This paper presents the method to eliminate the constraint reaction in the Lagrange multiplier form equation of motion by using a generalized coordinate driveder from the velocity constraint equation. This method introduces a matrix method by considering the m dimensional space spanned by the rows of the constraint jacobian matrix. The orthogonal vectors defining the constraint manifold are projected to null vectors by the tangential vectors defined on the constraint manifold. Therefore the orthogonal projection matrix is defined by the tangential vectors. For correcting the generalized position coordinate, the optimization problem is formulated. And this correction process is analyzed by the quasi Newton method. Finally this method is verified through 3 dimensional vehicle model.

  • PDF