• 제목/요약/키워드: defensin

검색결과 57건 처리시간 0.031초

Characterization and cDNA Cloning of a Defensin-Like Peptide, Harmoniasin, from Harmonia axyridis

  • Kim, In-Woo;Lee, Joon-Ha;Park, Ha-Yan;Kwon, Young-Nam;Yun, Eun-Young;Nam, Sung-Hee;Kim, Seong-Ryul;Ahn, Mi-Young;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1588-1590
    • /
    • 2012
  • We compared the mRNA expression profile of the Harmonia axyridis larvae that were either untreated or treated with LPS. The extracted mRNAs were subjected to ACP RT-PCR analysis using a combination of arbitrary primers and oligo (dT) primer. Among the 47 DEGs differentially expressed, we identified a cDNA showing homology with defensin-like antibacterial peptide. The cDNA showed a putative 32-residue signal sequence and a 50-residue mature peptide named harmoniasin. We also investigated the antibacterial activity of the harmoniasin analog, which exhibited potent antibacterial activities against Gramnegative and -positive bacteria strains and it also evidenced no hemolytic activity.

Antimicrobial Peptides in Innate Immunity against Mycobacteria

  • Shin, Dong-Min;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • 제11권5호
    • /
    • pp.245-252
    • /
    • 2011
  • Antimicrobial peptides/proteins are ancient and naturally-occurring antibiotics in innate immune responses in a variety of organisms. Additionally, these peptides have been recognized as important signaling molecules in regulation of both innate and adaptive immunity. During mycobacterial infection, antimicrobial peptides including cathelicidin, defensin, and hepcidin have antimicrobial activities against mycobacteria, making them promising candidates for future drug development. Additionally, antimicrobial peptides act as immunomodulators in infectious and inflammatory conditions. Multiple crucial functions of cathelicidins in antimycobacterial immune defense have been characterized not only in terms of direct killing of mycobacteria but also as innate immune regulators, i.e., in secretion of cytokines and chemokines, and mediating autophagy activation. Defensin families are also important during mycobacterial infection and contribute to antimycobacterial defense and inhibition of mycobacterial growth both in vitro and in vivo. Hepcidin, although its role in mycobacterial infection has not yet been characterized, exerts antimycobacterial effects in activated macrophages. The present review focuses on recent efforts to elucidate the roles of host defense peptides in innate immunity to mycobacteria.

Purification and cDNA Cloning of Insect Defensin from Lepidopteran Lavae, Galleria mellonella

  • Jeong, Woo-Hyuk;Yun, Eun-Kyung;Lee, Young-Shin;Kim, Iksoo;Ryu, Kang-Sun;Lee, In-Hee
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 제46회 춘계 학술연구 발표회
    • /
    • pp.76-76
    • /
    • 2003
  • Here we report an antifungal peptide isolation from G. mellonella larvae. The peptide shows a high degree of sequence homology to an insect defensin, named heliomicin, first reported in Lepidoptera. The peptide was purified by a three-step procedure consisting of acid extraction, gel permeation chromatography and reversed-phase HPLC. First the N-terminal amino acid sequence of the purified peptide was determined by automated Edman degradation. (omitted)

  • PDF

Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

  • Lee, Jaeho;Lee, Daeun;Choi, Hyemin;Kim, Ha Hyung;Kim, Ho;Hwang, Jae Sam;Lee, Dong Gun;Kim, Jae Il
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.625-630
    • /
    • 2014
  • Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin's ${\alpha}$-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin's ${\alpha}$-helical region is highly homologous to those of other insect defensins.

Replication of the Association between Copy Number Variation on 8p23.1 and Autism by Using ASD-specific BAC Array

  • Woo, Jung-Hoon;Yang, Song-Ju;Yim, Seon-Hee;Hu, Hae-Jin;Shin, Myung-Ju;Oh, Eun-Hee;Kang, Hyun-Woong;Park, Seon-Yang;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제8권1호
    • /
    • pp.19-27
    • /
    • 2010
  • To discover genetic markers for autism spectrum disorder (ASD), we previously applied genome-wide BAC array comparative genomic hybridization (array-CGH) to 28 autistic patients and 62 normal controls in Korean population, and identified that chromosomal losses on 8p23.1 and on 17p11.2 are significantly associated with autism. In this study, we developed an 8.5K ASD-specific BAC array covering 27 previously reported ASD-associated CNV loci including ours and examined whether the associations would be replicated in 8 ASD patient cell lines of four different ethnic groups and 10 Korean normal controls. As a result, a CNV-loss on 8p23.1 was found to be significantly more frequent in patients regardless of ethnicity (p<0.0001). This CNV region contains two coding genes, DEFA1 and DEFA3, which are members of DEFENSIN gene family. Two other CNVs on 17p11.2 and Xp22.31 were also distributed differently between ASDs and controls, but not significant (p=0.069 and 0.092, respectively). All the other loci did not show significant association. When these evidences are considered, the association between ASD and CNV of DEFENSIN gene seems worthy of further exploration to elucidate the pathogenesis of ASD. Validation studies with a larger sample size will be required to verify its biological implication.

Simultaneous and Systemic Knock-down of Big Defensin 1 and 2 gene Expression in the Pacific Oyster Crassostrea gigas using Long Double-stranded RNA-mediated RNA Interference

  • Jee, Bo Young;Kim, Min Sun;Cho, Mi Young;Lee, Soon Jeong;Park, Myung Ae;Kim, Jin Woo;Choi, Seung Hyuk;Jeong, Hyun Do;Kim, Ki Hong
    • Fisheries and Aquatic Sciences
    • /
    • 제17권3호
    • /
    • pp.377-380
    • /
    • 2014
  • RNA interference (RNAi)-mediated transcriptional knock-down of Crassostrea gigas big defensin 1 and 2 genes (Cg-BigDef1 and Cg-BigDef2) was investigated. The cDNA sequences of Cg-BigDef1 and Cg-BigDef2 were identical, excluding an additional fragment of 20 nucleotides in Cg-BigDef1; thus, a long double-stranded RNA (dsRNA) targeting the mRNA of Cg-BigDef2 effectively downregulated both Cg-BigDef2 and Cg-BigDef1. In addition, long dsRNA targeting green fluorescent protein (GFP) did not affect transcription of the two big defensin genes. These results suggest that the transcriptional downregulation of Cg-BigDef1 and Cg-BigDef2 was mediated by sequence-specific RNA interference (RNAi). Despite injection of long dsRNA targeting Cg-BigDef2 into only the adductor muscle, knock-down of Cg-BigDef1 and Cg-BigDef2 was observed in the adductor muscle, hemocytes, mantle, and gills, suggestive of systemic spread of RNAi in C. gigas. Furthermore, the inhibitory effect of dsRNA persisted until 72 h post-injection, indicative of a long-lasting RNAi-mediated knock-down of target genes.

호박벌 유래 디펜신 유전자의 분자적 특성분석 및 항균 활성 (Antimicrobial activity and characterization for defensin of synthetic oligopeptides derived from Bombus ignitus)

  • 강희윤;김인우;이준하;권용남;윤은영;윤형주;김성렬;김익수;황재삼
    • 한국잠사곤충학회지
    • /
    • 제50권2호
    • /
    • pp.161-165
    • /
    • 2012
  • 호박벌 유래 디펜신의 전체 아미노산 서열의 구조 분석 후에 항균활성을 갖는 서열을 선발하였고, 전체 및 펩타이드 길이와 구조적 차이에 대한 종합적인 결과로서 기존에 보고되어진 ${\alpha}$-helix 구조의 펩타이드 보다는 ${\beta}$-sheet의 일부 서열과 ${\alpha}$-helix의 서열이 공존할 때 항균 활성이 보다 뛰어남을 확인하였다. 특히 시스테인-아르기닌 (38C-39R)이 포함되어 있는 펩타이드 서열에서 항균력이 우수하였고, 이는 세포벽에 친화력이 있는 염기성 펩타이드의 특성으로 예상하고 있다.

HaCaT 세포에서 회향 열매의 피부장벽기능과 hyaluronic acid 생성에 미치는 영향 (The Effects of the Fruits of Foeniculum vulgare on Skin Barrier Function and Hyaluronic Acid Production in HaCaT Keratinocytes)

  • 유학인;양인준;빅터루베리오린차;박인식;이동웅;신흥묵
    • 생명과학회지
    • /
    • 제25권8호
    • /
    • pp.880-888
    • /
    • 2015
  • 회향은 미나리과에 속하는 다년생식물인 Foeniculum vulgare Mill.의 성숙한 과실로서 항염, 진통, 피부노화방지 등의 효과를 가지고 있어 다양한 질환에 우수한 치료효과를 나타내는 것으로 알려져 왔다. 따라서 본 연구에서는 기능성이 우수한 회향 열매 추출물을 이용하여 피부 질환 치료제 및 피부장벽 기능 개선 소재로서의 적용가능성을 확인하였다. 이를 위해 각질형성세포주인 HaCaT에 회향 열매 메탄올 추출물과 그 분획물(hexane, methyl chloride, ethyl acetate, butanol)을 처리한 후, involucrin, loricrin, filaggrin의 발현과 hyaluronic acid의 생성 및 β-defensin -1, -2, -3, LL-37의 mRNA 발현을 측정하였다. 그 결과butanol 분획물 50 μg/ml을 24시간 동안 처리시 involucrin과 filaggrin단백질 발현을 각각122.8%, 105%로 유의하게 증가시킴을 확인하였다. Elisa assay를 통해 분석한 결과, ethyl acetate와 butanol 분획물은 대조군에 비해 hyaluronic acid의 생성을 각각17%, 11% 증가시켰으며, 이는 hyaluronic acid synthesis-1의 mRNA 발현 증가에 의한 것임을 확인하였다. 그러나 회향 열매 메탄올 추출물과 분획물 모두에서 β-defensin -1, -2, -3, LL-37의 mRNA 발현은 증가되지 않았다. 이러한 결과는 회향 열매 butanol 분획물이 각질형성세포에서 물리적 장벽을 형성하고 보습인자 조절을 통해 피부장벽 기능을 강화하는데 효과적임을 의미한다.

Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

  • Xu, Jian;Zhong, Fei;Zhang, Yonghong;Zhang, Jianlou;Huo, Shanshan;Lin, Hongyu;Wang, Liyue;Cui, Dan;Li, Xiujin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권4호
    • /
    • pp.576-584
    • /
    • 2017
  • Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine ${\beta}-defensin-2$ (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and grampositive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.