• Title/Summary/Keyword: defense signaling

Search Result 196, Processing Time 0.029 seconds

Secondary metabolites of myxobacteria (점액세균의 이차대사산물)

  • Hyun, Hyesook;Cho, Kyungyun
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.175-187
    • /
    • 2018
  • Myxobacteria produce diverse secondary metabolites for predation, self-defense, intercellular signaling, and other unknown functions. Many secondary metabolites isolated from myxobacteria show pharmaceutically useful bioactivity such as anticancer, antibacterial, and antifungal activities with a unique mechanism of action. Therefore, a large number of myxobacterial strains have been isolated globally and many bioactive compounds have been purified from them. However, 16S rRNA database analysis indicates that there are far more types of myxobacterial species in the wild than have ever been isolated, and genome sequence analysis suggests that each myxobacterium is capable of producing much more metabolites than already known. In this article, the current status of studies on the secondary metabolites from myxobacteria, their biosynthetic genes, biological functions, and transcriptional regulatory factors governing gene expression were reviewed.

Crosstalk of Zn in Combination with Other Fertilizers Underpins Interactive Effects and Induces Resistance in Tomato Plant against Early Blight Disease

  • Awan, Zoia Arshad;Shoaib, Amna;Khan, Kashif Ali
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.330-340
    • /
    • 2019
  • The present study was undertaken to evaluate the integrated effect of zinc (Zn) with other nutrients in managing early blight (EB) disease in tomato. A pot experiment was carried out with basal application of the recommended level of macronutrients [nitrogen, phosphorus and potassium (NPK)] and micronutrients [magnesium (Mg) and boron (B)] in bilateral combination with Zn (2.5 and 5.0 mg/kg) in a completely randomized deigned in replicates. Results revealed that interactive effect of Zn with Mg or B was often futile and in some cases synergistic. Zn with NPK yield synergistic outcome, therefore EB disease was managed significantly (disease incidence: 25% and percent severity index: 13%), which resulted in an efficient signaling network that reciprocally controls nutrient acquisition and uses with improved growth and development in a tomato plant. Thus, crosstalk and convergence of mechanisms in metabolic pathways resulted in induction of resistance in tomato plant against a pathogen which significantly improved photosynthetic pigment, total phenolics, total protein content and defense-related enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL)]. The tremendous increase in total phenolics and PAL activity suggesting their additive effect on salicylic acid which may help the plant to systemically induce resistance against pathogen attack. It was concluded that interactive effect of Zn (5.0 mg/kg) with NPK significantly managed EB disease and showed positive effect on growth, physiological and biochemical attributes therefor use of Zn + NPK is simple and credible efforts to combat Alternaria stress in tomato plants.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

miR-30a-5p Augments the Anti-inflammatory Effects of Dexmedetomidine in LPS-induced BV2 Cells (LPS로 유도된 BV2 세포에서 Dexmetomidine이 갖는 항염증효과에 대한 miR-30a-5p의 시너지 효과)

  • Kim, Ji-Eun;Yang, Seung-Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.3
    • /
    • pp.201-208
    • /
    • 2022
  • Neuroinflammation is defined as a neurological inflammation within the brain and the spinal cord. In neuroinflammation, microglia are the tissue-resident macrophages of the central nervous system, which act as the first line of defense against harmful pathogens. Dexmedetomidine (Dex) has an anti-inflammatory effect in many neurological conditions. Additionally, the microRNA-30a-5p (miR-30a-5p) mimic has been proven to be effective in macrophages in inflammatory conditions. This study aimed to investigate the synergistic anti-inflammatory effects of both miR-30a-5p and Dex in lipopolysaccharide (LPS)-induced BV2 cells. This study showed that miR-30a-5p and Dex decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation in LPS-induced BV2 cells. MiR-30a-5p and Dex alleviated tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), LPS-induced phosphorylation c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinase (ERK) and p38. Also, the expression of the NOD-like receptor pyrin domain containing 3 inflammasome (NLRP3), cleaved caspase-1, and ASC was inhibited. Furthermore, LPS-stimulated nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression were attenuated by Dex and miR-30a-5p. Our results indicate that a combination of Dex and miR-30a-5p, attenuates NF-κB activation, the mitogen-activated protein kinase (MAPK) signaling pathway, and inflammatory mediators involved in LPS-induced inflammation and inhibits the activation of the NLRP3 inflammasome in LPS-activated BV2 cells.

Enhancement of Disease Control Efficacy of Chemical Fungicides Combined with Plant Resistance Inducer 2,3-Butanediol against Turfgrass Fungal Diseases

  • Duraisamy, Kalaiselvi;Ha, Areum;Kim, Jongmun;Park, Ae Ran;Kim, Bora;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.182-193
    • /
    • 2022
  • Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.

Hydrogen Sulfide Alleviates Seed Germination Inhibition in Oilseed Rape (Brassica napus L.) Under Salt Stress

  • Muchlas Muchamad;Bok-Rye Lee;Sang-Hyun Park;Tae-Hwan Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.56-61
    • /
    • 2023
  • The germination process is critical for plant growth and development and it is largely affected by environmental stress, especially salinity. Recently, hydrogen sulfide (H2S) is well known to act as a signaling molecule in a defense mechanism against stress conditions but poorly understood regulating seed germination. In this study, the effects of NaHS (the H2S donor) pretreatment on various biochemical (hydrogen peroxide (H2O2) content and amylase and protease activity) and physiological properties (germination rate) during seed germination of oilseed rape (Brassica napus L. cv. Mosa) were examined under salt stress. The seed germination and seedling growth of oilseed rape were inhibited by NaCl treatment but it was alleviated by NaHS pretreatment. The NaCl treatment increased H2O2 content leading to oxidative stress, but NaHS pre-treatments maintained much lower levels of H2O2 in germinating seeds under salt stress. Amylase activity, a starch degradation enzyme, significantly increased over 2-fold in control, NaHS pretreatment, and NaHS pretreatment under NaCl during seed germination compared to NaCl treatment. Protease activity was highly induced in NaHS-pretreated seeds compared to NaCl treatment, accompanied by a decrease in protein content. These results indicate that NaHS pretreatment could improve seed germination under salt stress conditions by decreasing H2O2 accumulation and activating the degradation of protein and starch to support seedling growth.

Neurogenic effect of exercise via the thioredoxin-1/ extracellular regulated kinase/β-catenin signaling pathway mediated by β2-adrenergic receptors in chronically stressed dentate gyrus

  • Kim, Mun-Hee;Leem, Yea-Hyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.3
    • /
    • pp.13-21
    • /
    • 2019
  • [Purpose] Chronic stress is a precipitating factor for depression, whereas exercise is beneficial for both the mood and cognitive process. The current study demonstrates the anti-depressive effects of regular exercise and the mechanisms linked to hippocampal neurogenesis. [Methods] Mice were subjected to 14 consecutive days of restraint, followed by 3 weeks of treadmill running, and were then subjected to behavioral tests that included the forced swimming and Y-maze tests. Protein levels were assessed using western blot analysis and newborn cells were detected using 5-bromo-2'-deoxyuridine (BrdU). [Results] Three weeks of treadmill running ameliorated the behavioral depression caused by 14 days of continuous restraint stress. The exercise regimen enhanced BrdU-labeled cells and class III β-tubulin levels in the hippocampal dentate gyrus, as well as those of thioredoxin-1 (TRX-1) and synaptosomal β2-adrenergic receptors (β2-AR) under stress. In vitro experiments involving treatment with recombinant human TRX-1 (rhTRX-1) augmented the levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2), nuclear β-catenin, and proliferating cell nuclear antigens, which were previously inhibited by U0216 and FH535 (inhibitors of ERK1/2 and β-catenin/T cell factor-mediated transcription, respectively). The hippocampal neurogenesis elicited by a 7-day exercise regimen was abolished by a selective inhibitor of β2-AR, butoxamine. [Conclusion] These results suggest that TRX-1-mediated hippocampal neurogenesis by β2-AR function is a potential mechanism underlying the psychotropic effect of exercise.

OsF3H Gene Increases Insect Resistancy in Rice through Transcriptomic Changes and Regulation of Multiple Biosynthesis Pathways

  • Rahmatullah Jan;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.287-287
    • /
    • 2022
  • In this study, we analyze RNA-seq data from OxF3Hand WT at several points (Oh, 3 h, 12 h, and 24 h) after WBPH infection. A number of the genes were further validated by RT-qPCR. Results revealed that highest number of DEGs (4,735) between the two genotypes detected after 24 h of infection. Interestingly, many of the DEGs between the WT and OsF3H under control conditions were also found to be differentially expressed in OsF3H in response to WBPH infestation. These results indicate that significant differences in gene expression between the "OxF3H" and "WT" exist as the infection time increases. Many of these DEGs were related to oxidoreductase activity, response to stress, salicylic acid biosynthesis, metabolic process, defense response to pathogen, cellular response to toxic substance, and regulation of hormones level. Moreover, genes involved in salicylic acid (SA) and Ethylene (Et) biosynthesis were upregulated in OxF3H plants while jasmonic acid (JA), Brassinosteroid (Br), and abscisic acid (ABA) signaling pathways were found downregulated in OxF3H plant during WBPH infestation. Interestingly, many DEGs related to pathogenesis such as OsPR1, OsPR1b, NPR1, OsNPR3 and OsNPR5 were found significantly upregulated in OxF3H plants. Additionally, genes related to MAPKs pathway, and about 30 WRKY genes involved in different pathways were found upregulated in OxF3H plants after WBPH infestation. This suggests that overexpression of the OxF3H gene leads to multiple transcriptomic changes and impact plant hormones, pathogenic related and secondary metabolites related genes and enhancing the plant resistance to WBPH infestation.

  • PDF

LC-MS Analysis According to the Combined Treatment of Paenibacillus yonginensis DCY84T and Silicon in Rice

  • Yo-Han Yoo;Mee Youn Lee;Yeon-Ju Kim;Eok-Keun Ahn;Ki-Hong Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.232-232
    • /
    • 2022
  • We reported in our recent studies that the combined treatment of Paenibacillus yonginensis DCY84T (DCY84T) and Silicon (Si) promotes initial plant growth and increases resistance to biotic and abiotic stress. To understand the molecular background of these phenotypes, Liquid Chromatography Mass Spectrometry (LC-MS) analysis was performed, and it was confirmed that unsaturated fatty acid metabolites such as oleic acid and linoleic acid decreased in response to the combined treatment of DCY84T and Si. The stearoyl-acyl carrier protein desaturase (SACPD) introduces the cis double bond into the acyl-ACPs at C9, resulting in the production of unsaturated fatty acid. We identified OsSSI2 encoding SACPD in rice and found that the expression of OsSSI2 was reduced under DCY84T and Si treatment. Furthermore, qRT-PCR analysis revealed that the expression of OsWRKY45, which is downstream of OsSSI2, was upregulated in response to DCY84T and Si treatment. These results enable the speculation that activation of the salicylic acid (SA)-responsive gene, OsWRKY45, may contribute to enhancing biological stress resistance. Based on this, we propose a probable model for the rice defense pathway following DCY84T and Si treatment. This model retains a WRKY45-dependent but NH1(NPR1)-independent SA signaling pathway.

  • PDF

Transcriptomic Insights into Abies koreana Drought Tolerance Conferred by Aureobasidium pullulans AK10

  • Jungwook Park;Mohamed Mannaa;Gil Han;Hyejung Jung;Hyo Seong Jeon;Jin-Cheol Kim;Ae Ran Park;Young-Su Seo
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • The conservation of the endangered Korean fir, Abies koreana, is of critical ecological importance. In our previous study, a yeast-like fungus identified as Aureobasidium pullulans AK10, was isolated and shown to enhance drought tolerance in A. koreana seedlings. In this study, the effectiveness of Au. pullulans AK10 treatment in enhancing drought tolerance in A. koreana was confirmed. Furthermore, using transcriptome analysis, we compared A. koreana seedlings treated with Au. pullulans AK10 to untreated controls under drought conditions to elucidate the molecular responses involved in increased drought tolerance. Our findings revealed a predominance of downregulated genes in the treated seedlings, suggesting a strategic reallocation of resources to enhance stress defense. Further exploration of enriched Kyoto Encyclopedia of Genes and Genomes pathways and protein-protein interaction networks revealed significant alterations in functional systems known to fortify drought tolerance, including the terpenoid backbone biosynthesis, calcium signaling pathway, pyruvate metabolism, brassinosteroid biosynthesis, and, crucially, flavonoid biosynthesis, renowned for enhancing plant drought resistance. These findings deepen our comprehension of how AK10 biostimulation enhances the resilience of A. koreana to drought stress, marking a substantial advancement in the effort to conserve this endangered tree species through environmentally sustainable treatment.