Browse > Article
http://dx.doi.org/10.15324/kjcls.2022.54.3.201

miR-30a-5p Augments the Anti-inflammatory Effects of Dexmedetomidine in LPS-induced BV2 Cells  

Kim, Ji-Eun (Department of Biomedical Laboratory Science, Konyang University)
Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.54, no.3, 2022 , pp. 201-208 More about this Journal
Abstract
Neuroinflammation is defined as a neurological inflammation within the brain and the spinal cord. In neuroinflammation, microglia are the tissue-resident macrophages of the central nervous system, which act as the first line of defense against harmful pathogens. Dexmedetomidine (Dex) has an anti-inflammatory effect in many neurological conditions. Additionally, the microRNA-30a-5p (miR-30a-5p) mimic has been proven to be effective in macrophages in inflammatory conditions. This study aimed to investigate the synergistic anti-inflammatory effects of both miR-30a-5p and Dex in lipopolysaccharide (LPS)-induced BV2 cells. This study showed that miR-30a-5p and Dex decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation in LPS-induced BV2 cells. MiR-30a-5p and Dex alleviated tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), LPS-induced phosphorylation c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinase (ERK) and p38. Also, the expression of the NOD-like receptor pyrin domain containing 3 inflammasome (NLRP3), cleaved caspase-1, and ASC was inhibited. Furthermore, LPS-stimulated nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression were attenuated by Dex and miR-30a-5p. Our results indicate that a combination of Dex and miR-30a-5p, attenuates NF-κB activation, the mitogen-activated protein kinase (MAPK) signaling pathway, and inflammatory mediators involved in LPS-induced inflammation and inhibits the activation of the NLRP3 inflammasome in LPS-activated BV2 cells.
Keywords
Dexmedetomidine; miR-30a-5p; Neuroinflammatory diseases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Meng F, Yu W, Duan W, Wang T, Liu Y. Dexmedetomidine attenuates LPS-mediated BV2 microglia cells inflammation via inhibition of glycolysis. Fundam Clin Pharmacol. 2020;34:313-320. https://doi.org/10.1111/fcp.12528   DOI
2 Zhang L, Xiao F, Zhang J, Wang X, Ying J, Wei G, et al. Dexmedetomidine mitigated NLRP3-mediated neuroinflammation via the ubiquitin-autophagy pathway to improve perioperative neurocognitive disorder in mice. Front Pharmacol. 2021;12:1143. https://doi.org/10.3389/fphar.2021.646265   DOI
3 Li H, Zhang X, Chen M, Chen J, Gao T, Yao S. Dexmedetomidine inhibits inflammation in microglia cells under stimulation of LPS and ATP by c-Fos/NLRP3/caspase-1 cascades. EXCLI J. 2018;17:302. https://doi.org/ 10.17179/excli2017-1018   DOI
4 Cho KJ, Song J, Oh Y, Lee JE. MicroRNA-Let-7a regulates the function of microglia in inflammation. Mol Cell Neurosci. 2015; 68:167-176. https://doi.org/10.1016/j.mcn.2015.07.004   DOI
5 Bao Y, Zhu Y, He G, Ni H, Liu C, Ma L, et al. Dexmedetomidine attenuates neuroinflammation in LPS-stimulated BV2 microglia cells through upregulation of miR-340. Drug Des Devel Ther. 2019;13:3465. https://doi.org/10.2147/DDDT.S210511   DOI
6 Qiu Z, Lu P, Wang K, Zhao X, Li Q, Wen J, et al. Dexmedetomidine inhibits neuroinflammation by altering microglial M1/M2 polarization through MAPK/ERK pathway. Neurochem Res. 2020;45:345-353. https://doi.org/10.1007/s11064-019-02922-1   DOI
7 Li P, Yao Y, Ma Y, Chen Y. MiR-30a-5p ameliorates LPS-induced inflammatory injury in human A549 cells and mice via targeting RUNX2. Innate Immun. 2021;27:41-49. https://doi.org/10.1177/1753425920971347   DOI
8 Deng Y, Cai L, Wang F, Huang J, Wang H, Li L, et al. Upregulated microRNA-381-5p strengthens the effect of dexmedetomidine preconditioning to protect against myocardial ischemia-reperfusion injury in mouse models by inhibiting CHI3L1. Int Immunopharmacol. 2021;92:107326. https://doi.org/10.1016/j.intimp.2020.107326   DOI
9 Zhao C, Sun X, Li L. Biogenesis and function of extracellular miRNAs. ExRNA. 2019;1:1-9. https://doi.org/10.1186/s41544-019-0039-4   DOI
10 O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402. https://doi.org/10.3389/fendo.2018.00402   DOI
11 Yang L, Ge D, Chen X, Jiang C, Zheng S. miRNA-544a regulates the inflammation of spinal cord injury by inhibiting the expression of NEUROD4. Cell Physiol Biochem. 2018;51:1921-1931. https://doi.org/10.1159/000495717   DOI
12 Zhao J, Wang H, Dong L, Sun S, Li L. miRNA-20b inhibits cerebral ischemia-induced inflammation through targeting NLRP3. Int J Mol Med. 2019;43:1167-1178. https://doi.org/10.3892/ijmm.2018.4043   DOI
13 Fu X, Shen YI, Wang W, Li X. MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling. Clin Exp Pharmacol Physiol. 2018;45:68-74. https://doi.org/10.1111/1440-1681.12856   DOI
14 Jin Y, Yao G, Wang Y, Teng L, Wang Y, Chen H, et al. MiR-30c-5p mediates inflammatory responses and promotes microglia survival by targeting eIF2α during Cryptococcus neoformans infection. Microb Pathog. 2020;141:103959. https://doi.org/10.1016/j.micpath.2019.103959   DOI
15 Fukuda M, Vazquez AL, Zong X, Kim SG. Effects of the α2-adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex. Eur J Neurosci. 2013;37:80-95. https://doi.org/10.1111/ejn.12024   DOI
16 Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225-242. https://doi.org/10.1038/nri.2017.125   DOI
17 Lenz KM, Nelson LH. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front Immunol. 2018;9:698. https://doi.org/10.3389/fimmu.2018.00698   DOI
18 Zhang S, Han L, Wei J, Shi Z, Pu P, Zhang J, et al. Combination treatment with doxorubicin and microRNA-21 inhibitor synergistically augments anticancer activity through upregulation of tumor suppressing genes. Int J of Oncol. 2015;46:1589-1600. https://doi.org/10.3892/ijo.2015.2841   DOI
19 Lively S, Schlichter LC. Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+ TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Front Cell Neurosci. 2018;12:215. https://doi.org/10.3389/fncel.2018.00215   DOI
20 Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J of Mol Sci. 2019;20:2293. https://doi.org/10.3390/ijms20092293   DOI
21 Li L, Kang L, Zhao W, Feng Y, Liu W, Wang T, et al. miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett. 2017;400:89-98. https://doi.org/10.1016/j.canlet.2017.04.034   DOI
22 Wen W, Gong X, Cheung H, Yang Y, Cai M, Zheng J, et al. Dexmedetomidine alleviates microglia-induced spinal inflammation and hyperalgesia in neonatal rats by systemic lipopolysaccharide exposure. Front Cell Neurosci. 2021;15:725267. https://doi.org/10.3389/fncel.2021.725267   DOI
23 Gao J, Sun Z, Xiao Z, Du Q, Niu X, Wang G, et al. Dexmedetomidine modulates neuroinflammation and improves outcome via alpha2-adrenergic receptor signaling after rat spinal cord injury. Br J Anaesth. 2019;123:827-838. https://doi.org/10.1016/j.bja.2019.08.026   DOI
24 Zhou XY, Liu J, Xu ZP, Fu Q, Wang PQ, Zhang H. Dexmedetomidine inhibits the lipopolysaccharide-stimulated inflammatory response in microglia through the pathway involving TLR4 and NF- κB. The Kaohsiung J Med Sci. 2019;35:750-756. https://doi.org/10.1002/kjm2.12112   DOI