DOI QR코드

DOI QR Code

Hydrogen Sulfide Alleviates Seed Germination Inhibition in Oilseed Rape (Brassica napus L.) Under Salt Stress

  • Muchlas Muchamad (Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University) ;
  • Bok-Rye Lee (Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University) ;
  • Sang-Hyun Park (Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University) ;
  • Tae-Hwan Kim (Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University)
  • Received : 2023.03.23
  • Accepted : 2023.03.28
  • Published : 2023.03.31

Abstract

The germination process is critical for plant growth and development and it is largely affected by environmental stress, especially salinity. Recently, hydrogen sulfide (H2S) is well known to act as a signaling molecule in a defense mechanism against stress conditions but poorly understood regulating seed germination. In this study, the effects of NaHS (the H2S donor) pretreatment on various biochemical (hydrogen peroxide (H2O2) content and amylase and protease activity) and physiological properties (germination rate) during seed germination of oilseed rape (Brassica napus L. cv. Mosa) were examined under salt stress. The seed germination and seedling growth of oilseed rape were inhibited by NaCl treatment but it was alleviated by NaHS pretreatment. The NaCl treatment increased H2O2 content leading to oxidative stress, but NaHS pre-treatments maintained much lower levels of H2O2 in germinating seeds under salt stress. Amylase activity, a starch degradation enzyme, significantly increased over 2-fold in control, NaHS pretreatment, and NaHS pretreatment under NaCl during seed germination compared to NaCl treatment. Protease activity was highly induced in NaHS-pretreated seeds compared to NaCl treatment, accompanied by a decrease in protein content. These results indicate that NaHS pretreatment could improve seed germination under salt stress conditions by decreasing H2O2 accumulation and activating the degradation of protein and starch to support seedling growth.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A3072357).

References

  1. Beck, E. and Ziegler, P. 1989. Biosynthesis and degradation of starch in higher plants. Annual Review Plant Physiology and Plant Molecular Biology. 40:95-117. doi:10.1146/annurev.pp.40.060189.000523 
  2. Bentsink, L. and Koornneef, M. 2008. Seed dormancy and germination. Arabidopsis Book. 6:e0119. doi:10.1199/tab.0119
  3. Beyene, G., Foyer, C.H., Kunert, K.J., 2006. Two new cysteine proteinases with specific expression patterns in mature and senescent tobacco (Nicotiana tabacum L.) leaves. Journal of Experimental Botany. 57:1431e1443. 
  4. Daszkowska-Golec, A. 2011. Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. Omics. 15:763-774. doi:10.1089/omi.2011.0082 
  5. Goud, P.B. and Kachole, M.S. 2011. Effect of exogenous hydrogen peroxide on peroxidase and polyphenol oxidase activities in Cajanus cajan (L.) millsp. detached leaves. International Journal of Current Research. 3:61-65. 
  6. Gubler, F., Kalla, R., Roberts, J.K. and Jacobsen, J.V. 1995. Gibberellin-regulated expression of a myb gene in barley aleurone cells: Evidence for Myb transactivation of high-pI alpha-amylase gene promoter. Plant Cell. 7:1879-1891.  https://doi.org/10.1105/tpc.7.11.1879
  7. Guo, Z., Liang, Y., Yan, J., Yang, E., Li, K. and Xu, H. 2018. Physiological response and transcription profiling analysis reveals the role of H2S in alleviating excess nitrate stress tolerance in tomato roots. Plant Physiology Biochemistry. 124:59-69. doi:10.1016/j.plaphy.2018.01.011 
  8. Kaya, C., Higgs, D., Ashraf, M., Alyemeni, M.N. and Ahmad, P. 2020. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiologia Plantarum. 168:256-277. doi:10.1111/ppl.12976 
  9. Kumar, A., Rodrigues, V. and Verma, S. 2021. Effect of salt stress on seed germination, morphology, biochemical parameters, genomic template stability, and bioactive constituents of Andrographis paniculata Nees. Acta Physiologia Plantarium. 43:68. doi:10.1007/s11738-021-03237-x 
  10. Lai, D., Mao, Y., Zhou, H., Li, F., Wu, M., Zhang, J., He, Z., Cui, W. and Xie, Y. 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science. 225:117-129.  https://doi.org/10.1016/j.plantsci.2014.06.006
  11. Liu, H., Zhang, X.H., Liu, B.W., Ao, B., Liu, Q., Wen, S.Y. and Xu, Y.F. 2019. Hydrogen sulfide regulates photosynthesis of tall fescue under low-light stress. Photosynthetica. 57:714-723.  https://doi.org/10.32615/ps.2019.094
  12. Mostofa, M.G., Saegusa, D., Fujita, M. and Tran, L.S.P. 2015. Hydrogen sulfide regulates salt stress in rice by maintaining Na(+)/K(+) balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Frontiers in Plant Science. 6:1055. doi: 10.3389/fpls.2015.01055 
  13. Pan, D.Y., Fu, X., Zhang, X.W., Liu, F.J., Bi, H.G. and Ai, X.Z. 2020. Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings. Protoplasma. 257:1543-1557. doi:10.1007/s00709-020-01531-y 
  14. Rahman, M.M., Banu, L.A., Rahman, M.M., Shahjadee, U.F. 2007. Changes of the enzymes activity during germination of different Mungbean varieties. Bangladesh Journal of Scientific and Industrial Research. 42(2):213-216. doi: 10.3329/bjsir.v42i2.474 
  15. Samani, M.A., Pourakbar, L. and Azimi, N. 2013. Magnetic field effects on seed germination and activities of some enzymes in cumin. Life Science Journal. 10(1):323-328. 
  16. Shen, J.J., Xing, T.J., Yuan, H.H., Liu, Z.Q., Jin, Z.P., Zhang, L.P. and Pei, Y.X. 2013. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions. PLoS ONE. 8:e77047. doi:10.1038/s41598-022-22815-8 
  17. Tanyolac, D., Ekmekci, Y. and Unalan, S. 2007. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere. 67:89-98.  https://doi.org/10.1016/j.chemosphere.2006.09.052
  18. Zafar, S., Ashraf, M.Y. and Ashraf, M. 2005. Protease activity and associated changes during germination and early seedling stages of cotton grown under saline conditions. International Journal of Botany. 1:103-107. 
  19. Zhang, N.N., Zou, H., Lin, X.Y., Pan, Q., Zhang, W.Q., Zhang, J.H., Wei, G.H., Shangguan, Z.P. and Chen, J. 2020. Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiency-induced senescence in soybean. Plant, Cell & Environment 43(5):1130-1147. doi:10.1111/pce.13736 
  20. Zhang, Y.X., Hu, K.D., Lv, K., Li, Y.H., Hu, L.Y., Zhang, X.Q., Ruan, L., Liu, Y.S. and Zhang, H. 2015. The hydrogen sulfide donor NaHS delays programmed cell death in barley aleurone layers by acting as an antioxidant. Oxidative Medicine and Cellular Longevity. 2015:714756. 
  21. Zhou, H., Chen, Y., Zhai, F., Zhang, J., Zhang, F., Yuan, X. and Xie, Y. 2020. Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling. Plant Physiology Biochemistry. 155:213-220. doi:10.1016/j.plaphy.2020.07.038