• 제목/요약/키워드: deep-learning

검색결과 5,679건 처리시간 0.027초

A study on the positioning of fine scintillation pixels in a positron emission tomography detector through deep learning of simulation data

  • Byungdu Jo;Seung-Jae Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1733-1737
    • /
    • 2024
  • In order to specify the location of the scintillation pixel that interacted with gamma rays in the positron emission tomography (PET) detector, conventionally, after acquiring a flood image, the location of interaction between the scintillation pixel and gamma ray could be specified through a pixel-segmentation process. In this study, the experimentally acquired signal was specified as the location of the scintillation pixel directly, without any conversion process, through the simulation data and the deep learning algorithm. To evaluate the accuracy of the specification of the scintillation pixel location through deep learning, a comparative analysis with experimental data through pixel segmentation was performed. In the same way as in the experiment, a detector was configured on the simulation, a model was built using the acquired data through deep learning, and the location was specified by applying the experimental data to the built model. Accuracy was calculated through comparative analysis between the specified location and the location obtained through the segmentation process. As a result, it showed excellent accuracy of about 85 %. When this method is applied to a PET detector, the position of the scintillation pixel of the detector can be specified simply and conveniently, without additional work.

Generating 3D Digital Twins of Real Indoor Spaces based on Real-World Point Cloud Data

  • Wonseop Shin;Jaeseok Yoo;Bumsoo Kim;Yonghoon Jung;Muhammad Sajjad;Youngsup Park;Sanghyun Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2381-2398
    • /
    • 2024
  • The construction of virtual indoor spaces is crucial for the development of metaverses, virtual production, and other 3D content domains. Traditional methods for creating these spaces are often cost-prohibitive and labor-intensive. To address these challenges, we present a pipeline for generating digital twins of real indoor environments from RGB-D camera-scanned data. Our pipeline synergizes space structure estimation, 3D object detection, and the inpainting of missing areas, utilizing deep learning technologies to automate the creation process. Specifically, we apply deep learning models for object recognition and area inpainting, significantly enhancing the accuracy and efficiency of virtual space construction. Our approach minimizes manual labor and reduces costs, paving the way for the creation of metaverse spaces that closely mimic real-world environments. Experimental results demonstrate the effectiveness of our deep learning applications in overcoming traditional obstacles in digital twin creation, offering high-fidelity digital replicas of indoor spaces. This advancement opens for immersive and realistic virtual content creation, showcasing the potential of deep learning in the field of virtual space construction.

중국의 심층학습개발 (The Development of Deep Learning in China)

  • 조옥란;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.533-534
    • /
    • 2019
  • This paper is to summarize the academic status of deep learning in Chinese scientific institutions and universities based on the literatures from CNKI. We analyzed the various development of deep learning in China based on the application of computer vision, voice recognition and natural language processing.

Improved Inference for Human Attribute Recognition using Historical Video Frames

  • Ha, Hoang Van;Lee, Jong Weon;Park, Chun-Su
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.120-124
    • /
    • 2021
  • Recently, human attribute recognition (HAR) attracts a lot of attention due to its wide application in video surveillance systems. Recent deep-learning-based solutions for HAR require time-consuming training processes. In this paper, we propose a post-processing technique that utilizes the historical video frames to improve prediction results without invoking re-training or modifying existing deep-learning-based classifiers. Experiment results on a large-scale benchmark dataset show the effectiveness of our proposed method.

Arabic Text Recognition with Harakat Using Deep Learning

  • Ashwag, Maghraby;Esraa, Samkari
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.41-46
    • /
    • 2023
  • Because of the significant role that harakat plays in Arabic text, this paper used deep learning to extract Arabic text with its harakat from an image. Convolutional neural networks and recurrent neural network algorithms were applied to the dataset, which contained 110 images, each representing one word. The results showed the ability to extract some letters with harakat.

오토인코더에 기반한 딥러닝을 이용한 사이버대학교 학생의 학업 성취도 예측 분석 시스템 연구 (Study for Prediction System of Learning Achievements of Cyber University Students using Deep Learning based on Autoencoder)

  • 이현진
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권6호
    • /
    • pp.1115-1121
    • /
    • 2018
  • 본 논문에서는 사이버대학교 학습관리시스템에 누적된 데이터를 기반으로 학습 성과를 예측하기 위하여 딥러닝에 기반한 데이터 분석 방법을 연구하였다. 학습자의 학업 성취도를 예측하면, 학습자의 학습을 촉진하여 교육의 질을 높일 수 있는 도구로 활용될 수 있다. 학습 성과의 예측의 정확도를 향상시키기 위하여 오토인코더에 기반하여 한학기 출결 상황을 예측하고, 학기 진행 중인 평가 요소들과 결합하여 딥러닝으로 학습하여 최종 예측의 정확도를 높였다. 제안하는 예측 방법을 검증하기 위하여 학습 진행 과정의 출결데이터의 예측과 평가요소 데이터를 활용하여 최종학습 성취도를 예측하였다. 실험을 통하여 학기 진행중에 학습자의 성취도를 예측할 수 있는 것을 보였다.

Deep learning-based sensor fault detection using S-Long Short Term Memory Networks

  • Li, Lili;Liu, Gang;Zhang, Liangliang;Li, Qing
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.51-65
    • /
    • 2018
  • A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.

Robust Deep Age Estimation Method Using Artificially Generated Image Set

  • Jang, Jaeyoon;Jeon, Seung-Hyuk;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • 제39권5호
    • /
    • pp.643-651
    • /
    • 2017
  • Human age estimation is one of the key factors in the field of Human-Robot Interaction/Human-Computer Interaction (HRI/HCI). Owing to the development of deep-learning technologies, age recognition has recently been attempted. In general, however, deep learning techniques require a large-scale database, and for age learning with variations, a conventional database is insufficient. For this reason, we propose an age estimation method using artificially generated data. Image data are artificially generated through 3D information, thus solving the problem of shortage of training data, and helping with the training of the deep-learning technique. Augmentation using 3D has advantages over 2D because it creates new images with more information. We use a deep architecture as a pre-trained model, and improve the estimation capacity using artificially augmented training images. The deep architecture can outperform traditional estimation methods, and the improved method showed increased reliability. We have achieved state-of-the-art performance using the proposed method in the Morph-II dataset and have proven that the proposed method can be used effectively using the Adience dataset.

깊은 신경망 기반의 전이학습을 이용한 사운드 이벤트 분류 (Sound event classification using deep neural network based transfer learning)

  • 임형준;김명종;김회린
    • 한국음향학회지
    • /
    • 제35권2호
    • /
    • pp.143-148
    • /
    • 2016
  • 깊은 신경망은 데이터의 특성을 효과적으로 나타낼 수 있는 방법으로 최근 많은 응용 분야에서 활용되고 있다. 하지만, 제한적인 양의 데이터베이스는 깊은 신경망을 훈련하는 과정에서 과적합 문제를 야기할 수 있다. 본 논문에서는 풍부한 양의 음성 혹은 음악 데이터를 이용한 전이학습을 통해 제한적인 양의 사운드 이벤트에 대한 깊은 신경망을 효과적으로 훈련하는 방법을 제안한다. 일련의 실험을 통해 제안하는 방법이 적은 양의 사운드 이벤트 데이터만으로 훈련된 깊은 신경망에 비해 현저한 성능 향상이 있음을 확인하였다.

Cloud Task Scheduling Based on Proximal Policy Optimization Algorithm for Lowering Energy Consumption of Data Center

  • Yang, Yongquan;He, Cuihua;Yin, Bo;Wei, Zhiqiang;Hong, Bowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1877-1891
    • /
    • 2022
  • As a part of cloud computing technology, algorithms for cloud task scheduling place an important influence on the area of cloud computing in data centers. In our earlier work, we proposed DeepEnergyJS, which was designed based on the original version of the policy gradient and reinforcement learning algorithm. We verified its effectiveness through simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with reinforcement learning algorithm in terms of convergence rate, converged value, and stability. The results indicate that PPO performed better in training and test data sets compared with reinforcement learning algorithm, as well as other general heuristic algorithms, such as First Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than DeepEnergyJS by about 7.814%.