• Title/Summary/Keyword: deep surface excavation

Search Result 35, Processing Time 0.024 seconds

Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Prediction of Deep Excavation-induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 굴착에 따른 지표침하평가)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.69-76
    • /
    • 2003
  • This paper presents the prediction of deep excavation-induced ground surface movements using artifical neural network(ANN) technique, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Arificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

Prediction of Deep Excavation-induced Ground Surface Movements Using Artificial Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.53-65
    • /
    • 2004
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network(ANN) technique, which is of prime importance in the damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements, was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Artificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effective for a first-order prediction of ground movements associated with deep-excavation.

Analysis of Perimetrical Ground Settlement Behavior for Deep Excavations in Urban Areas (도심지 깊은 굴착으로 발생하는 인접 지반 지표침하 분석)

  • 양구승;김명모
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.101-124
    • /
    • 1997
  • Adjacent ground surface settlements by deep excavations are analyzed by field observations in the areas where excavations are performed in sandy soils or weathered soils underlain by rocks, First, the magnitude and the distribution of ground surface settlements, which are developed before main excavation activities (e. g., diaphragm wall installation and center pile installation) , are measured and analyzed. Secondly, the magnitude and the distribution of ground surface settlements by main excavation are measured and analyzed. And the results are compared with the predictions obtained by the empirical methods. Through case studies performed on the excavation sites where adjacent ground surfaces or structures are damaged by excavation activities, upper limit location of ground surface cracks are investigated.

  • PDF

Ground Behavior and Reinforcing Methods of NATM Tunnel through Deep Weathered Zone (NATM 터널의 대심도 풍화대층에서의 지반거동 및 보강방법)

  • Sung, Hwa-Don;An, Jung-Whan;Chun, Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1782-1788
    • /
    • 2007
  • This study analyzed ground settlement and ground stress depending on tunnel excavation and the ground reinforcing grouting methods for double line road tunnel through deep weathered zone. Diameter of double line road tunnel was approximately 12m and umbrella arch method and side wall reinforcing grouting were applied. The ring-cut split excavation method and CD-cut excavation method for excavation method were applied. Analysis of failure rate and vertical stress ratio show that the tunnel for which the height of the cover(H) was higher than four times the diameter, it can be considered a deep tunnel. Comparisons of various excavation and ground reinforcement methods were showed that CD-cut method results in lower surface and crown settlement, and lower failure rate than where using Ring-cut split method. In addition the side wall reinforcing grouting resulted in reduction of tunnel displacement and settlement.

  • PDF

A simplified combined analytical method for evaluating the effect of deep surface excavations on the shield metro tunnels

  • Liu, Bo;Yu, Zhiwei;Han, Yanhui;Wang, Zhiliu;Yang, Shuo;Liu, Heng
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.405-418
    • /
    • 2020
  • Deep excavation may have impact on the adjacent tunnels. It is obvious that the excavation will adversely affect and even damage the existing tunnels if the induced deformation exceeds the capacity of tunnel structures. It hence creates a high necessity to predict tunnel displacement induced by nearby excavation to ensure the safety of tunnel. In this paper, a simplified method to evaluate the heave of the underlying tunnel induced by adjacent excavation is presented and verified by field measurement results. In the proposed model, the tunnel is represented by a series of short beams connected by tensile springs, compressional springs and shear springs, so that the rotational effect and shearing effect of the joints between lining rings can be captured. The proposed method is compared with the previous modelling methods (e.g., Euler-Bernoulli beam, a series of short beams connected only by shear springs) based on a field measured longitudinal deformation of subway tunnels. Results of these case studies show a reasonable agreement between the predictions and observations.

Two dimensional finite element modeling of Tabriz metro underground station L2-S17 in the marly layers

  • Mansouri, Hadiseh;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.315-327
    • /
    • 2019
  • Deep excavations for development of subway systems in metropolitan regions surrounded by adjacent buildings is an important geotechnical problem, especialy in Tabriz city, where is mostly composed of young alluvial soils and weak marly layers. This study analyzes the wall displacement and ground surface settlement due to deep excavation in the Tabriz marls using two dimensional finite element method. The excavation of the station L2-S17 was selected as a case study for the modelling. The excavation is supported by the concrete diaphragm wall and one row of steel struts. The analyses investigate the effects of wall stiffness and excavation width on the excavation-induced deformations. The geotechnical parameters were selected based on the results of field and laboratory tests. The results indicate that the wall deflection and ground surface settlement increase with increasing excavation depth and width. The change in maximum wall deflection and ground settlement with considerable increase in wall stiffness is marginal, however the lower wall stiffness produces the larger wall and ground displacements. The maximum wall deflections induced by the excavation with a width of 8.2 m are 102.3, 69.4 and 44.3 mm, respectively for flexible, medium and stiff walls. The ratio of maximum ground settlement to maximum lateral wall deflection approaches to 1 with increasing wall stiffness. It was found that the wall stiffness affects the settlement influence zone. An increase in the wall stiffness results in a decrease in the settlements, an extension in the settlement influence zones and occurrence of the maximum settlements at a larger distance from the wall. The maximum of settlement for the excavation with a width of 14.7 m occurred at 6.1, 9.1 and 24.2 m away from the wall, respectively, for flexible, medium and stiff walls.

Numerical analysis of deep excavation in layered and asymmetric ground conditions (흙막이 굴착 시 지층 경사의 영향에 대한 수치해석적 분석)

  • Shin, Jong-Ho;Kim, Hak-Moon;Kim, Sang-Hwan;Kim, Sang-Kil;Nam, Taek-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1260-1268
    • /
    • 2008
  • In case of deep excavation analysis, the theory of beam on elasto-plastic geo-material (elasto-plastic theory) can not consider the inclined ground layers appropriately. It is frequently assumed that the soil layers are parallel to the surface. However, the soil layers are generally inclined and even asymmetric. The common modelling of the asymmetric half section of the excavation system using the elasto-plastic theory, can lead differences from the real behaviour of ground, which has critical significance in case of deep excavation in urban area. In this study, an attempt to find appropriate modelling methods was made by carrying out a comparative study between the FEM and the elasto-plastic analyses. It is shown that in case of the upward-inclined soil profile the elasto-plastic theory may underestimate the performance of retaining structures.

  • PDF

A simplified framework for estimation of deformation pattern in deep excavations

  • Abdollah Tabaroei;Reza Jamshidi Chenari
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • To stabilize the excavations in urban area, soil anchorage is among the very common methods in geotechnical engineering. A more efficient deformation analysis can potentially lead to cost-effective and safer designs. To this end, a total of 116 three-dimensional (3D) finite element (FE) models of a deep excavation supported by tie-back wall system were analyzed in this study. An initial validation was conducted through examination of the results against the Texas A&M excavation cases. After the validation step, an extensive parametric study was carried out to cover significant design parameters of tie-back wall system in deep excavations. The numerical results indicated that the maximum horizontal displacement values of the wall (δhm) and maximum surface settlement (δvm) increase by an increase in the value of ground anchors inclination relative to the horizon. Additionally, a change in the wall embedment depth was found to be contributing more to δvm than to δhm. Based on the 3D FE analysis results, two simple equations are proposed to estimate excavation deformations for different scenarios in which the geometric configuration parameters are taken into account. The model proposed in this study can help the engineers to have a better understanding of the behavior of such systems.

Measures to control deformation in deep excavation for cut and cover tunneling

  • Nam, Kyu-Tae;Jeong, Jae-Ho;Kim, Seung-Hyun;Kim, Kang-Hyun;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.339-348
    • /
    • 2022
  • The bored tunneling method is generally preferred for urban tunnel construction, However the cut & cover tunnel is still necessary for special conditions, such as metro station and access structures. In some case, deep excavation for cut & cover construction is planed of irregular and unusual shape, as a consequence, the convex and concave corner is often encountered during that excavation. In particular, discontinuity or imbalance of the support structure in the convex corner can lead to collapse, which may result in damages and casualties. In this study, the behavior of the convex corner of retaining structure were investigated using 3-dimensional numerical models established to be able to simulate the split-shaped behavior of convex corners. To improve the stability in the vicinity of the convex corner, several stabilizing measures were proposed and estimated numerically. It is found that linking two discretized wales at the convex corner can effectively perform the control of deformation. Furthermore, it was also confirmed that the stabilizing measures can be enhanced when the tie-material linking two discretized wales is installed at the depth of the maximum wall deflection.