• 제목/요약/키워드: deep learning structure

검색결과 469건 처리시간 0.027초

Research on damage detection and assessment of civil engineering structures based on DeepLabV3+ deep learning model

  • Chengyan Song
    • Structural Engineering and Mechanics
    • /
    • 제91권5호
    • /
    • pp.443-457
    • /
    • 2024
  • At present, the traditional concrete surface inspection methods based on artificial vision have the problems of high cost and insecurity, while the computer vision methods rely on artificial selection features in the case of sensitive environmental changes and difficult promotion. In order to solve these problems, this paper introduces deep learning technology in the field of computer vision to achieve automatic feature extraction of structural damage, with excellent detection speed and strong generalization ability. The main contents of this study are as follows: (1) A method based on DeepLabV3+ convolutional neural network model is proposed for surface detection of post-earthquake structural damage, including surface damage such as concrete cracks, spaling and exposed steel bars. The key semantic information is extracted by different backbone networks, and the data sets containing various surface damage are trained, tested and evaluated. The intersection ratios of 54.4%, 44.2%, and 89.9% in the test set demonstrate the network's capability to accurately identify different types of structural surface damages in pixel-level segmentation, highlighting its effectiveness in varied testing scenarios. (2) A semantic segmentation model based on DeepLabV3+ convolutional neural network is proposed for the detection and evaluation of post-earthquake structural components. Using a dataset that includes building structural components and their damage degrees for training, testing, and evaluation, semantic segmentation detection accuracies were recorded at 98.5% and 56.9%. To provide a comprehensive assessment that considers both false positives and false negatives, the Mean Intersection over Union (Mean IoU) was employed as the primary evaluation metric. This choice ensures that the network's performance in detecting and evaluating pixel-level damage in post-earthquake structural components is evaluated uniformly across all experiments. By incorporating deep learning technology, this study not only offers an innovative solution for accurately identifying post-earthquake damage in civil engineering structures but also contributes significantly to empirical research in automated detection and evaluation within the field of structural health monitoring.

스마트 TMD 제어를 위한 강화학습 알고리즘 성능 검토 (Performance Evaluation of Reinforcement Learning Algorithm for Control of Smart TMD)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.41-48
    • /
    • 2021
  • A smart tuned mass damper (TMD) is widely studied for seismic response reduction of various structures. Control algorithm is the most important factor for control performance of a smart TMD. This study used a Deep Deterministic Policy Gradient (DDPG) among reinforcement learning techniques to develop a control algorithm for a smart TMD. A magnetorheological (MR) damper was used to make the smart TMD. A single mass model with the smart TMD was employed to make a reinforcement learning environment. Time history analysis simulations of the example structure subject to artificial seismic load were performed in the reinforcement learning process. Critic of policy network and actor of value network for DDPG agent were constructed. The action of DDPG agent was selected as the command voltage sent to the MR damper. Reward for the DDPG action was calculated by using displacement and velocity responses of the main mass. Groundhook control algorithm was used as a comparative control algorithm. After 10,000 episode training of the DDPG agent model with proper hyper-parameters, the semi-active control algorithm for control of seismic responses of the example structure with the smart TMD was developed. The simulation results presented that the developed DDPG model can provide effective control algorithms for smart TMD for reduction of seismic responses.

전이학습을 수행한 신경망을 사용한 압축센싱 심장 자기공명영상 (Compressed-Sensing Cardiac CINE MRI using Neural Network with Transfer Learning)

  • 박성재;윤종현;안창범
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1408-1414
    • /
    • 2019
  • 전이학습을 수행한 심층 인공신경망을 압축센싱 심혈관 자기공명영상에 적용하였다. 전이학습은 선행학습 신경망의 구조나 필터 커널, 가중치를 현재의 학습이나 응용에 활용하는 방법이다. 전이학습은 학습 속도를 향상시키고, 학습 데이터가 제한적일 때 신경망의 일반화에 도움이 된다. 8명의 건강한 지원자가 참여한 심장 자기공명영상 실험에서 전이학습을 수행한 신경망은 단독학습 신경망에 비해 학습시간이 5배 이상 단축되었다. 시험 데이터에 대해서도 전이학습을 수행한 신경망은 전이학습을 수행하지 않은 신경망에 비하여 낮은 정규화 평균제곱오차와 향상된 재구성 영상화질을 보였다.

Unification of Deep Learning Model trained by Parallel Learning in Security environment

  • Lee, Jong-Lark
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권12호
    • /
    • pp.69-75
    • /
    • 2021
  • 최근 인공지능 분야에서 가장 많이 사용하는 딥러닝은 그 구조가 점차 크고 복잡해지고 있다. 딥러닝 모델이 커질수록 이를 학습시키기 위해서는 대용량의 데이터가 필요하지만 데이터가 여러 소유 주체별로 분산되어 있고 보안 문제로 인해 이를 통합하여 학습시키기 어려운 경우가 발생한다. 우리는 동일한 딥러닝 모형이 필요하지만 보안 문제로 인해 데이터가 여러곳에 분산되어 처리될 수 밖에 없는 상황에서 데이터를 소유하고 있는 주체별로 분산 학습을 수행한 후 이를 통합하는 방법을 연구하였다. 이를 위해 보안 상황을 V-환경과 H-환경으로 가정하여 소유 주체별로 분산학습을 수행했으며 Average, Max, AbsMax를 사용하여 분산학습된 결과를 통합하였다. mnist-fashion 데이터에 이를 적용해 본 결과 V-환경에서는 정확도 면에서 데이터를 통합시켜 학습한 결과와 큰 차이가 없음을 확인할 수 있었으며, H-환경에서는 차이는 존재하지만 의미있는 결과를 얻을 수 있었다.

머신러닝을 통한 건축 도시 데이터 분석의 기초적 연구 - 딥러닝을 이용한 유동인구 모델 구축 - (Machine Learning Based Architecture and Urban Data Analysis - Construction of Floating Population Model Using Deep Learning -)

  • 신동윤
    • 한국BIM학회 논문집
    • /
    • 제9권1호
    • /
    • pp.22-31
    • /
    • 2019
  • In this paper, we construct a prototype model for city data prediction by using time series data of floating population, and use machine learning to analyze urban data of complex structure. A correlation prediction model was constructed using three of the 10 data (total flow population, male flow population, and Monday flow population), and the result was compared with the actual data. The results of the accuracy were evaluated. The results of this study show that the predicted model of the floating population predicts the correlation between the predicted floating population and the current state of commerce. It is expected that it will help efficient and objective design in the planning stages of architecture, landscape, and urban areas such as tree environment design and layout of trails. Also, it is expected that the dynamic population prediction using multivariate time series data and collected location data will be able to perform integrated simulation with time series data of various fields.

Deep Convolutional Neural Network with Bottleneck Structure using Raw Seismic Waveform for Earthquake Classification

  • Ku, Bon-Hwa;Kim, Gwan-Tae;Min, Jeong-Ki;Ko, Hanseok
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose deep convolutional neural network(CNN) with bottleneck structure which improves the performance of earthquake classification. In order to address all possible forms of earthquakes including micro-earthquakes and artificial-earthquakes as well as large earthquakes, we need a representation and classifier that can effectively discriminate seismic waveforms in adverse conditions. In particular, to robustly classify seismic waveforms even in low snr, a deep CNN with 1x1 convolution bottleneck structure is proposed in raw seismic waveforms. The representative experimental results show that the proposed method is effective for noisy seismic waveforms and outperforms the previous state-of-the art methods on domestic earthquake database.

Joint Demosaicing and Super-resolution of Color Filter Array Image based on Deep Image Prior Network

  • Kurniawan, Edwin;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.13-21
    • /
    • 2022
  • In this paper, we propose a learning based joint demosaicing and super-resolution framework which uses only the mosaiced color filter array(CFA) image as the input. As the proposed method works only on the mosaicied CFA image itself, there is no need for a large dataset. Based on our framework, we proposed two different structures, where the first structure uses one deep image prior network, while the second uses two. Experimental results show that even though we use only the CFA image as the training image, the proposed method can result in better visual quality than other bilinear interpolation combined demosaicing methods, and therefore, opens up a new research area for joint demosaicing and super-resolution on raw images.

Enhanced deep soft interference cancellation for multiuser symbol detection

  • Jihyung Kim;Junghyun Kim;Moon-Sik Lee
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.929-938
    • /
    • 2023
  • The detection of all the symbols transmitted simultaneously in multiuser systems using limited wireless resources is challenging. Traditional model-based methods show high performance with perfect channel state information (CSI); however, severe performance degradation will occur if perfect CSI cannot be acquired. In contrast, data-driven methods perform slightly worse than model-based methods in terms of symbol error ratio performance in perfect CSI states; however, they are also able to overcome extreme performance degradation in imperfect CSI states. This study proposes a novel deep learning-based method by improving a state-of-the-art data-driven technique called deep soft interference cancellation (DSIC). The enhanced DSIC (EDSIC) method detects multiuser symbols in a fully sequential manner and uses an efficient neural network structure to ensure high performance. Additionally, error-propagation mitigation techniques are used to ensure robustness against channel uncertainty. The EDSIC guarantees a performance that is very close to the optimal performance of the existing model-based methods in perfect CSI environments and the best performance in imperfect CSI environments.

동영상 안정화를 위한 옵티컬 플로우의 비지도 학습 방법 (Deep Video Stabilization via Optical Flow in Unstable Scenes)

  • 이보희;김광수
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.115-127
    • /
    • 2023
  • 동영상 안정화 기술은 최근 1인 미디어 시장이 거대화됨에 따라 그 중요성이 점점 커지고 있는 카메라 기술 중 하나이다. 딥러닝 기반의 기존 방법들에서는 안정화 전/후 동영상 데이터 쌍을 사용하였으나 동영상의 특성상 동기화된 안정화 전/후 데이터를 만드는 것은 많은 시간과 노력이 필요하다. 최근 이러한 문제를 완화하기 위하여 안정화 전 데이터만을 사용하는 비지도 학습 방법이 제시되고 있다. 본 논문에서는 비지도 학습 방법의 하나인 Convolutional Autoencoder 구조를 사용하여 안정화 전/후 동영상 데이터 쌍 없이 안정화 전 영상만으로 안정화 궤적을 학습하는 네트워크 구조를 제안한다. 네트워크 입력 및 출력으로 옵티컬 플로우를 사용하고 네트워크 경량화 및 노이즈 최소화를 위해 옵티컬 플로우를 Grid 단위로 맵핑하여 사용했다. 또한 비지도 학습 방법으로 안정화된 궤적을 생성하기 위해 옵티컬 플로우를 부드럽게 만드는 손실함수를 정의하였고 결과 비교를 통해 손실함수의 의도대로 부드러운 궤적을 생성하도록 네트워크가 학습되었음을 확인했다.

망 분리를 이용한 딥러닝 학습시간 단축에 대한 연구 (A Study on Reducing Learning Time of Deep-Learning using Network Separation)

  • 이희열;이승호
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.273-279
    • /
    • 2021
  • 본 논문에서는 딥러닝 구조를 분할을 이용한 개별 학습을 수행하여 학습시간을 단축하는 알고리즘을 제안한다. 제안하는 알고리즘은 망 분류 기점 설정 과정, 특징 벡터 추출 과정, 특징 노이즈 제거 과정, 클래스 분류 과정 등의 4가지 과정으로 구성된다. 첫 번째로 망 분류 기점 설정 과정에서는 효과적인 특징 벡터 추출을 위한 망 구조의 분할 기점을 설정한다. 두 번째로 특징 벡터 추출 과정에서는 기존에 학습한 가중치를 사용하여 추가 학습 없이 특징 벡터를 추출한다. 세 번째로 특징 노이즈 제거 과정에서는 추출된 특징 벡터를 입력받아 각 클래스의 출력값을 학습하여 데이터의 노이즈를 제거한다. 네 번째로 클래스 분류 과정에서는 노이즈가 제거된 특징 벡터를 입력받아 다층 퍼셉트론 구조에 입력하고 이를 출력하고 학습한다. 제안된 알고리즘의 성능을 평가하기 위하여 Extended Yale B 얼굴 데이터베이스를 사용하여 실험 하였다. 실험 결과, 1회 학습에 소요되는 시간의 경우 제안하는 알고리즘이 기존 알고리즘 기준 40.7% 단축하였다. 또한 목표 인식률까지 학습 횟수가 기존 알고리즘과 비교하여 단축하였다. 실험결과를 통해 1회 학습시간과 전체 학습시간을 감소시켜 기존의 알고리즘보다 향상됨을 확인하였다.