This paper proposes a method of restoring corrupted depth image captured by depth camera through unsupervised learning using generative adversarial network (GAN). The proposed method generates restored face depth images using 3D morphable model convolutional neural network (3DMM CNN) with large-scale CelebFaces Attribute (CelebA) and FaceWarehouse dataset for training deep convolutional generative adversarial network (DCGAN). The generator and discriminator equip with Wasserstein distance for loss function by utilizing minimax game. Then the DCGAN restore the loss of captured facial depth images by performing another learning procedure using trained generator and new loss function.
Journal of Advanced Information Technology and Convergence
/
v.10
no.1
/
pp.111-120
/
2020
Generative adversarial networks (GANs) achieved impressive performance on image generation and visual classification applications. However, adversarial networks meet difficulties in combining the generative model and unstable training process. To overcome the problem, we combined the deep residual network with upsampling convolutional layers to construct the generative network. Moreover, the study shows that image generation and classification performance become more prominent when the residual layers include on the generator. The proposed network empirically shows that the ability to generate images with higher visual accuracy provided certain amounts of additional complexity using proper regularization techniques. Experimental evaluation shows that the proposed method is superior to image generation and classification tasks.
Rotating machinery is widely applied in important equipment of nuclear power plants (NPPs), such as pumps and valves. The research on intelligent fault diagnosis of rotating machinery is crucial to ensure the safe operation of related equipment in NPPs. However, in practical applications, data-driven fault diagnosis faces the problem of small and imbalanced samples, resulting in low model training efficiency and poor generalization performance. Therefore, a deep convolutional conditional generative adversarial network (DCCGAN) is constructed to mitigate the impact of imbalanced samples on fault diagnosis. First, a conditional generative adversarial model is designed based on convolutional neural networks to effectively augment imbalanced samples. The original sample features can be effectively extracted by the model based on conditional generative adversarial strategy and appropriate number of filters. In addition, high-quality generated samples are ensured through the visualization of model training process and samples features. Then, a deep convolutional neural network (DCNN) is designed to extract features of mixed samples and implement intelligent fault diagnosis. Finally, based on multi-fault experimental data of motor and bearing, the performance of DCCGAN model for data augmentation and intelligent fault diagnosis is verified. The proposed method effectively alleviates the problem of imbalanced samples, and shows its application value in intelligent fault diagnosis of actual NPPs.
Alsulami, Fairouz;Alseleahbi, Hind;Alsaedi, Rawan;Almaghdawi, Rasha;Alafif, Tarik;Ikram, Mohammad;Zong, Weiwei;Alzahrani, Yahya;Bawazeer, Ahmed
International Journal of Computer Science & Network Security
/
v.22
no.9
/
pp.23-30
/
2022
Glaucoma is a chronic neuropathy that affects the optic nerve which can lead to blindness. The detection and prediction of glaucoma become possible using deep neural networks. However, the detection performance relies on the availability of a large number of data. Therefore, we propose different frameworks, including a hybrid of a generative adversarial network and a convolutional neural network to automate and increase the performance of glaucoma detection. The proposed frameworks are evaluated using five public glaucoma datasets. The framework which uses a Deconvolutional Generative Adversarial Network (DCGAN) and a DenseNet pre-trained model achieves 99.6%, 99.08%, 99.4%, 98.69%, and 92.95% of classification accuracy on RIMONE, Drishti-GS, ACRIMA, ORIGA-light, and HRF datasets respectively. Based on the experimental results and evaluation, the proposed framework closely competes with the state-of-the-art methods using the five public glaucoma datasets without requiring any manually preprocessing step.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.2
/
pp.456-477
/
2024
With information technology's rapid development, the Internet faces serious security problems. Studies have shown that malware has become a primary means of attacking the Internet. Therefore, adversarial samples have become a vital breakthrough point for studying malware. By studying adversarial samples, we can gain insights into the behavior and characteristics of malware, evaluate the performance of existing detectors in the face of deceptive samples, and help to discover vulnerabilities and improve detection methods for better performance. However, existing adversarial sample generation methods still need help regarding escape effectiveness and mobility. For instance, researchers have attempted to incorporate perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others into adversarial samples to obfuscate detectors. However, these methods are only effective in specific environments and yield limited evasion effectiveness. To solve the above problems, this paper proposes a malware adversarial sample generation method (PixGAN) based on the pixel attention mechanism, which aims to improve adversarial samples' escape effect and mobility. The method transforms malware into grey-scale images and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves the modeling ability of the generator and discriminator, thus enhancing the escape effect and mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of the quality of the adversarial samples. The experimental results show that the adversarial samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic detectors, respectively.
International Journal of Computer Science & Network Security
/
v.24
no.2
/
pp.136-142
/
2024
Haze is a very common phenomenon that degrades or reduces the visibility. It causes various problems where high quality images are required such as traffic and security monitoring. So haze removal from images receives great attention for clear vision. Due to its huge impact, significant advances have been achieved but the task yet remains a challenging one. Recently, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired "in the wild" and how we could gauge the progress in the field. This paper aims to bridge this gap. We present a comprehensive study and experimental evaluation on diverse GAN models in single image dehazing through benchmark datasets.
As artificial intelligence technology is actively used in image processing, it is possible to generate high-quality fake images based on deep learning. Fake images generated using GAN(Generative Adversarial Network), one of unsupervised learning algorithms, have reached levels that are hard to discriminate from the naked eye. Detecting these fake images is required as they can be abused for crimes such as illegal content production, identity fraud and defamation. In this paper, we develop a deep-learning model based on CNN(Convolutional Neural Network) for the detection of StyleGAN fake images. StyleGAN is one of GAN algorithms and has an excellent performance in generating face images. We experiment with 48 number of experimental scenarios developed by combining parameters of the proposed model. We train and test each scenario with 300,000 number of real and fake face images in order to present a model parameter that improves performance in the detection of fake faces.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.5
/
pp.1141-1162
/
2024
Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.
Sliding bearings are crucial rotating mechanical components in nuclear power plants, and their failures can result in severe economic losses and human casualties. Deep learning provides a new approach to bearing fault diagnosis, but there is currently a lack of a universal fault diagnosis model for studying bearing-rotor systems under various operating conditions, speeds and faults. Research on bearing-rotor systems supported by sliding bearings is limited, leading to insufficient fault data. To address these issues, this paper proposes a fault diagnosis model framework for bearing-rotor systems based on a deep convolutional generative adversarial network (TF-DLGAN). This model not only exhibits outstanding fault diagnosis performance but also addresses the issue of insufficient fault data. An experimental platform is constructed to conduct fault experiments under various operating conditions, speeds and faults, establishing a dataset for sliding bearing-rotor system faults. Finally, the model's effectiveness is validated using this dataset.
Purpose: This study aimed to generate virtual mandibular left first molar teeth using deep convolutional generative adversarial networks (DCGANs) and analyze their matching accuracy with actual tooth morphology to propose a new paradigm for using medical data. Methods: Occlusal surface images of the mandibular left first molar scanned using a dental model scanner were analyzed using DCGANs. Overall, 100 training sets comprising 50 original and 50 background-removed images were created, thus generating 1,000 virtual teeth. These virtual teeth were classified based on the number of cusps and occlusal surface ratio, and subsequently, were analyzed for consistency by expert dental technicians over three rounds of examination. Statistical analysis was conducted using IBM SPSS Statistics ver. 23.0 (IBM), including intraclass correlation coefficient for intrarater reliability, one-way ANOVA, and Tukey's post-hoc analysis. Results: Virtual mandibular left first molars exhibited high consistency in the occlusal surface ratio but varied in other criteria. Moreover, consistency was the highest in the occlusal buccal lingual criteria at 91.9%, whereas discrepancies were observed most in the occusal buccal cusp criteria at 85.5%. Significant differences were observed among all groups (p<0.05). Conclusion: Based on the classification of the virtually generated left mandibular first molar according to several criteria, DCGANs can generate virtual data highly similar to real data. Thus, subsequent research in the dental field, including the development of improved neural network structures, is necessary.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.