• Title/Summary/Keyword: dedicated short range communication

Search Result 88, Processing Time 0.019 seconds

A Study on the Traffic Information System Development Using DSRC (DSRC를 이용한 교통정보시스템 개발 연구)

  • Kwon, Han-Joon;Lee, Jae-Jun;Lee, Seung-Hwan;Lee, Jin-Kweon;Kim, Yong-Deak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.13-22
    • /
    • 2009
  • Recently, DSRC technology is used in the various fields such as parking system, BIS, ETC, etc. This paper suggests a traffic information system using this DSRC technology. The traffic information processing based on point detection using existing vehicle detection equipment is the system in which a collection and a service are operated separately while the traffic information system based on the link detection using DSRC is able to collect and provide the traffic information through the communication between RSE and OBU. The speed of a traffic congestion is high on the process converted from a point passing speed to a link average speed because the vehicle detection equipment makes the link traffic information into the point information. When the condition of traffic is deteriorated, traffic speed of the vehicle detection equipment becomes higher than DSRC. Especially, in this system, deflection by data of the traffic speed of the traffic information system is much decreased, and the unexpected condition detection and traffic condition are provided promptly.

  • PDF

In-vehicle Dilemma Zone Warning System at Signalized Intersections (신호교차로 내 딜레마구간 차내경고시스뎀 개발)

  • Moon Young-Jun;Lee Joo-Il
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.53-62
    • /
    • 2003
  • This paper demonstrates the in-vehicle dilemma zone warning system (DZWS) project developed as a part of the Driver Advisory and Collision Warning System in Automated Vehicle and Highway System (AVHS). The DZWS project, one of the Korea national ITS projects in 2000 develops the in-vehicle warning device to support drivers' decision making on whether to stop or to proceed to clear the intersection prior to the onset of yellow signal for avoiding the high risk of collision at signalized intersections through the dedicated short range communication (DSRC). This paper explores the design of optimal communication systems between roadway and vehicles, the operational and functional concepts of dilemma zone warning system based on appropriate approach speeds, and the system integration for field test at two sites of signalized intersections. Findings from the system integration indicated that the system would be implemented in eliminating the dilemma zone relative to approach speeds and in reducing red light violations and intersection collisions through the in-vehicle warning device at signalized intersection.

  • PDF

A Primary Channel Selection Scheme for Wideband WLAN V2X Communication (무선랜 기반 광대역 V2X 통신에서의 채널 접근 동작을 위한 주 채널 설정 기법)

  • Hong, Hanseul;Kim, Ronny Yongho;Ahn, Woojin
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.589-596
    • /
    • 2019
  • With the proliferation of intelligent transportation system (ITS) with dedicated short-range communication (DSRC) deployment, there are various applications requiring different throughput and reliability performance. To meet the enhanced throughput requirements in newly generated applications, IEEE 802.11bd is proposed to standardize for support of enhanced throughput and latency, preserving the fairness with previously deployed WLAN V2X devices. One of the main features of IEEE 802.11 bd is 20 MHz transmission to support the high data rate. In this paper, the primary channel selection method is proposed to guarantee the fairness with frame transmissions with 10 MHz bandwith including communications in WLAN V2X devices deployed with IEEE 802.11p. Simulation shows that the proposed channel access method for 20 MHz transmission with primary selection preserves the fairness without the change of channel access method in wide-band transmission.

Performance Analysis of OFDM-DSRC System Using LMMSE Equalization Technique (LMMSE 등화기법을 적용한 OFDM-DSRC 시스템의 성능분석)

  • Sung Tae-Kyung;Kim Soon-Young;Rhee Myung-Soo;Cho Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.23-28
    • /
    • 2005
  • The signal in wireless multi-path channel is affected by fading and ISI because of high data rate transmission, so the signal has the high error rate. The present modulation and demodulation method of DSRC system can not expect sufficient for providing data service over 1 Mbps, so the channel equalization and advanced modulation and demodulation methods are required. OFDM is generally known as an effective technique for high data rate transmission system, since it can prevent ISI by inserting a guard interval. However, a guard interval longer than channel delay spread has to be used in each OFDM symbol period, thus resulting a considerable loss in the efficiency of channel utilization Therefore the equalizer is necessary to cancel ISI to accommodate advanced ITS service with higher bit rate and longer channel delay spread condition In this paper, the channel equalizer for the OFDM -DSRC system was designed and its performance in a multi-path fading environment was evaluated with computer simulation.

Standardization Plans for Consolidated Implementation of ITS Technology (ITS 기술의 통합적 구축을 위한 표준화 방안 연구)

  • Park, Yong-Seo;Lee, Jae-Kyoung;Lee, Jin-Ho;Kang, Byeong-Gwon
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.149-155
    • /
    • 2013
  • Recently, automobile traffic systems are evolving toward Intelligent Traffic Systems(ITS) with smart sensor technology and collaboration between traffic systems and external ones. On the contrary, Korean ITS services have little improvement comparing with other communication services. The main causes of this phenomenon are due to already allocation of ITS recommended frequency band to broadcasting services, and also dedication of DSRC frequency band over ISM band resulting in interferences. This paper provides the analysis of current Korean ITS technology status, and two suggestions to activate the ITS industry. First, need to fix the ITS standard combining WAVE and DSRC specifications soon. Second, ITS frequency allocation to complete its standard implementation in near time frame.

A development of the Vehicle-To-Vehicle communication system using the Dedicated Short Range Communication technology (근거리 무선통신 기술 기반 차량간통신 시스템 개발)

  • Rhee Eung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.6-13
    • /
    • 2006
  • In this paper, we studied vehicle to vehicle (VTV) communication system using DSRC of 5.8 GHz bands. Nowadays, in the road traffic system is going intelligent and advancing, communication between driving vehicle is very important technology for ITS. We can contrive smoothness and safety traffic flowing by exchanging information about velocity, location, braking and driving condition of nearby vehicles. Therefore, we developed and verified the system which required for the communication among vehicles using DSRC technology of 5.8 GHz band hasa 1 Mbps data rate in the high mobility condition. For this, we developed DSRC modem, data link layer and logic link layer to make it possible that communication between vehicles of perfectly operation, and developed application service program for VTV communication. We performed to communication test in the general road and ascent road. In case of the general mad, obtained VTV communication results are more than number of 17 with in 300 m LOS coverage, and total communication time are $2.34{\sim]18.7$ msec that considered maximum 8-transaction. We blow that obtained results can be used VTV communication or the in areas form the feasibility road test as a function or various conditions. In the future, this system is very useful of advanced safety vehicle (ASV) and super smart vehicle system (SSVS) and so on.

Design of a Dual Band-pass Filter Using Fork-type Open Stubs and SIR Structure (포크 형태의 개방형 스터브 및 SIR 구조를 이용한 이중대역 대역통과 여파기의 설계)

  • Tae-Hyeon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.252-264
    • /
    • 2023
  • This paper proposes a design of a dual-band band-pass filter that integrates a λg/2 open SIR structure, a transmission line, and a fork-type structure with symmetric and asymmetric open stubs. To obtain the dual-band effect, the proposed filter uses the SIR structure and adjusts the impedance ratio of the SIR structure. Therefore, the position of the harmonics of the filter is shifted through the adjustment of the impedance ratio, and this can obtain a double-band effect. In order to obtain the dual-band characteristics, the dual-band effect is obtained by inserting a open stub between the SIR structures with the SIR structure divided in half. In addition, the second frequency response is obtained by adjusting the length of the open symmetrical stub in the fork-shaped structure. The asymmetrical open stub in the fork form achieves optimum bandwidth by adjusting the length. Therefore, the first center frequency of the proposed band-pass filter is 5.896 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.13 dB and 33.6 dB. The second center frequency is 5.906 GHz and the bandwidth is 13.6 %. At this time, the measurement results are 0.15 dB and 19.8 dB. The reason is that when the impedance ratio (Δ) is higher than 1, the position of the harmonic is shifted to a lower frequency band. However, if the impedance ratio (Δ) is lowered by one step, the position of harmonics will move to a higher frequency band. The function of the filter designed using these characteristics can be obtained from the measurement result. The proposed band-pass filter has no coupling loss and no via energy concentration loss because there is no coupling structure of input/output and no via hole. Therefore, system integration is possible due to its excellent performance, and it is expected that dedicated short-range communication (DSRC) system applications used in traffic communication systems will be possible.

Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측)

  • Kim, Eui-Jin;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.579-586
    • /
    • 2018
  • Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

DSRC Strategy and Future ITS (DSRC 전략과 향후의 ITS)

  • Park In-Gyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.105-119
    • /
    • 2006
  • The car navigation system to be accompanied to the car on-board equipment system or the development of mobile communication technique, the demand in information communication which connects an interior and the car outside is coming to be high, As applications, ETC/VISC/AHS classes get deceived supply are advanced. The research of DSRC radio systems actively, with medium of communication between the automobile and road, is advanced. DSRC radio systems are appropriate in massive data transfer, in the case which the traffic accident evasion is urgent, the notarization of the preferential control function which is necessary to a medium of communication, guarantee and security are suitable in the high-speed network. Accompanied to the cellular phone which is to be supplied recently suddenly, By complementing and coexisting each other, and it will be developed simultaneously. However, in a connection of this kind of communication system and high-speed DSRC radio system, Hand-over technique (network, radio transmission hand-over), there is a technical subject of the high-speed transmission techniques against the mobile devices and the realization is expected to be difficult in near, until 2010 year is becoming the plan of putting to practical use. Also as the next generation DSRC with 5.8GHz built-on board equipment and the road-side equipment are expected in near. In this paper DSRC systems which will be developed are discussed.

Design of 5.8 GHz Patch Array Antenna for FTMS Roadside Equipment (FTMS 기지국용 5.8 GHz 대역 배열 패치 안테나 설계)

  • Kwon, Han-Joon;Lee, Jae-Jun;Lee, Seung-Hwan;Kim, Yong-Deak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.61-70
    • /
    • 2008
  • This paper designed the antenna for collecting and servicing the traffic information that apply to freeway Traffic Management System, as using DSRC (Dedicated Short Range Communication). Active DSRC is the technology that is using 5.8GHz Radio Frequency to a mean Sequency and there are a lot of the case occurring a physical electric wave shadowing because of the traveling straight of a electric wave. In such inferior communication environment, it constructed the stabilized communication link that can do collecting and servicing the correct traffic information and designed the beam pattern considering the establishment position of the antenna that can apply to various road environments and a communication area. By considering the communication link environment, this paper designed and manufacture the mean frequency of 5.8GHz, the input loss of -17dB in 75MHz bandwidth, the Axial ratio of 1.5:1, and $2{\times}4$ array microstrip antenna which beam pattern have the characteristic of $55^{\circ}$ horizontal half power beam width and $26^{\circ}$elevation half power beam width and the minimum establishment height of the antenna was designed as 14m for avoiding electric wave shadowing on a physical condition between vehicles

  • PDF