• 제목/요약/키워드: decomposition optimization

검색결과 212건 처리시간 0.025초

날개꼴의 형상 최적화를 위한 유동방정식 영향 연구 (Influence of Flow Solvers On Airfoil Shape Optimization)

  • 정희택;류병석
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.67-73
    • /
    • 1999
  • In the present paper, three types of the flow solvers were used to investigate the influence on the airfoil shape optimization. The adopted equations, i.e., Euler, thin layer Navier-Stokes and full Navier-Stokes ones. are solved using implicit LU-ADI decomposition scheme. The gradient projection method with the sinusoidal function was used as an optimization algorithm. The present numerical method was applied to the drag minimization problems under the initial shape of NACA0012 airfoils.

  • PDF

동특성 민감도 해석을 이용한 전단형 철골구조물의 다목적 다단계 최적설계 (Multi-Objective and Multi-Level Optimization for Steel Frames Using Sensitivity Analysis of Dynamic Properties)

  • Cho, Hyo-Nam;Chung, Jee-Seung;Min, Dae-Hong;Kim, Hyun-Woo
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.333-342
    • /
    • 1999
  • An improved optimization algorithm for multi-objective and multi-level (MO/ML) optimum design of steel frames is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed method, well known multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through sensitivity analysis of dynamic properties is unposed in the paper. The efficiency and robustness of the improved MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical examples.

  • PDF

이산형 변수를 이용한 뼈대구조물의 다단계 최적설계 (Multi-Level Optimization for Steel Frames using Discrete Variables)

  • 조효남;민대용;박준용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.115-124
    • /
    • 2000
  • An efficient multi-level (EML) optimization algorithm using discrete variables of framed structures is proposed in this paper. For the efficiency of the proposed algorithm multi-level optimization techniques using a decomposition method that separates both system-level and element-level are incorporated in the algorithm In the system-level, to save the numerical efforts an efficient reanalysis technique through approximated structural responses such as moments and frequencies with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by automatic differentiation (AD) that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. In the element-level, to use AISC W-sections a section search algorithm is introduced. The efficiency and robustness of the EML algorithm, compared with a conventional multi-level (CML) algorithm and single-level genetic algorithm is successfully demonstrated in the numerical examples.

  • PDF

날개꼴의 형상 최적화를 위한 유동방정식 영향 연구 (Influence of Flow Solvers On Airfoil Shape Optimization)

  • 정희택;류병석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.171-176
    • /
    • 1999
  • In the present paper, three types of the flow solvers were used to investigate the influence on the airfoil shape optimization. The adopted equations, i.e., Euler , thin layer Navier- Stokes and full Navier-Stokes ones, are solved using implicit LU-ADI decomposition scheme. The feasible direction algorithm with the sinusoidal function was used as an optimization algorithm. The present numerical method was applied to the drag minimization problems under the initial shape of NACA0012 airfoils.

  • PDF

Shape optimization by the boundary element method with a reduced basis reanalysis technique

  • Leu, Liang-Jenq
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.73-84
    • /
    • 1999
  • This paper is concerned with shape optimization problems by the boundary element method (BEM) emphasizing the use of a reduced basis reanalysis technique proposed recently by the author. Problems of this class are conventionally carried out iteratively through an optimizer; a sequential quadratic programming-based optimizer is used in this study. The iterative process produces a succession of intermediate designs. Repeated analyses for the systems associated with these intermediate designs using an exact approach such as the LU decomposition method are time consuming if the order of the systems is large. The newly developed reanalysis technique devised for boundary element systems is utilized to enhance the computational efficiency in the repeated system solvings. Presented numerical examples on optimal shape design problems in electric potential distribution and elasticity show that the new reanalysis technique is capable of speeding up the design process without sacrificing the accuracy of the optimal solutions.

Using Machine Learning to Improve Evolutionary Multi-Objective Optimization

  • Alotaibi, Rakan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.203-211
    • /
    • 2022
  • Multi-objective optimization problems (MOPs) arise in many real-world applications. MOPs involve two or more objectives with the aim to be optimized. With these problems improvement of one objective may led to deterioration of another. The primary goal of most multi-objective evolutionary algorithms (MOEA) is to generate a set of solutions for approximating the whole or part of the Pareto optimal front, which could provide decision makers a good insight to the problem. Over the last decades or so, several different and remarkable multi-objective evolutionary algorithms, have been developed with successful applications. However, MOEAs are still in their infancy. The objective of this research is to study how to use and apply machine learning (ML) to improve evolutionary multi-objective optimization (EMO). The EMO method is the multi-objective evolutionary algorithm based on decomposition (MOEA/D). The MOEA/D has become one of the most widely used algorithmic frameworks in the area of multi-objective evolutionary computation and won has won an international algorithm contest.

프레임 구조의 계층적 설계 해석 및 최적화 (A Hierarchical Approach for Design Analysis and Optimization of Framed Structures)

  • 황진하;이학술
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.93-102
    • /
    • 2000
  • 본 연구는 부구조화에 기초한 계층적 접근방법을 이용하여 프레임구조에 대한 설계민감도해석과 최적화를 수행한다. 이 방법의 개념적 틀은 유형의 구조계와 무형의 설계과정을 계층적으로 모델링하고 부구조화해석과 다단계최적화를 결합하는데 있다. 여기서 해석과 총합을 위한 수학적 모델은 공통의 부구조화체계와 기반위에서 설정된다. 이러한 수학적 구조적 기반위에서 모듈화된 거동해석과 민감도해석 및 최적화과정이 서로 연계되고 통합된다. 여기서 설계민감도정보는 상태공간방법으로 계산되고, 시스템단계의 활성조건과 중량비 규준을 통해 부구조들의 조율이 이루어진다. 대형프레임구조에 대한 수치 예제들을 통해 본 연구의 타당성 및 효율성과 유용성을 검증한다.

  • PDF

Data reconciliation and optimization of utility plants for energy saving

  • Lee, Moo-Ho;Kim, Jeong-Hwan;Chonghun Han;Chang, Kun-Soo;Kim, Seong-Hwan;You, Sang-Hyun
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1997년도 추계학술발표회 논문집
    • /
    • pp.17-23
    • /
    • 1997
  • A methodology for on-line data reconciliation and optimization has been proposed to minimize the energy cost of a utility system. As industrial data tend to be corrupted by noise or gross error, fast and robust data reconciliation technique is essential for the on-line optimization of utility system. Thus, we propose the hierarchical decomposition approach that can be applicable to on-line data reconciliation and optimization. As this approach divides whole system into several subsystems and removes the nonlinearity of constraint systematically, it handles complexity of system easily and shows good performance in accuracy and computation speed. Through case studies, we prove that this methodology is a good candidate for on-line data reconciliation and optimization.

  • PDF

A Framework for Universal Cross Layer Networks

  • Khalid, Murad;Sankar, Ravi;Joo, Young-Hoon;Ra, In-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.239-247
    • /
    • 2008
  • In a resource-limited wireless communication environment, various approaches to meet the ever growing application requirements in an efficient and transparent manner, are being researched and developed. Amongst many approaches, cross layer technique is by far one of the significant contributions that has undoubtedly revolutionized the way conventional layered architecture is perceived. In this paper, we propose a Universal Cross Layer Framework based on vertical layer architecture. The primary contribution of this paper is the functional architecture of the vertical layer which is primarily responsible for cross layer interaction management and optimization. The second contribution is the use of optimization cycle that comprises awareness parameters collection, mapping, classification and the analysis phases. The third contribution of the paper is the decomposition of the parameters into local and global network perspective for opportunistic optimization. Finally, we have shown through simulations how parameters' variations can represent local and global views of the network and how we can set local and global thresholds to perform opportunistic optimization.

Resource Allocation in Multi-User MIMO-OFDM Systems with Double-objective Optimization

  • Chen, Yuqing;Li, Xiaoyan;Sun, Xixia;Su, Pan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2063-2081
    • /
    • 2018
  • A resource allocation algorithm is proposed in this paper to simultaneously minimize the total system power consumption and maximize the system throughput for the downlink of multi-user multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems. With the Lagrange dual decomposition method, we transform the original problem to its convex dual problem and prove that the duality gap between the two problems is zero, which means the optimal solution of the original problem can be obtained by solving its dual problem. Then, we use convex optimization method to solve the dual problem and utilize bisection method to obtain the optimal dual variable. The numerical results show that the proposed algorithm is superior to traditional single-objective optimization method in both the system throughput and the system energy consumption.