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Abstract

A methodology for on-line data reconciliation and optimization has been proposed to minimize the energy
cost of a utility system. As industrial data tend to be corrupted by noise or gross error, fast and robust data
reconciliation technique is essential for the on-line optimization of utility system. Thus, we propose the
hierarchical decomposition approach that can be applicable to on-line data reconciliation and optimization.
As this approach divides whole system into several subsystems and removes the nonlinearity of constraint
systematically, it handles complexity of system easily and shows good performance in accuracy and com-
putation speed. Through case studies, we prove that this methodology is a good candidate for on-line data

reconciliation and optimization.

INTRODUCTION

In chemical industries, the optimal operation of an
industrial utility plant is a very important problem
in terms of efficiency and cost. The utility plant
supplies steam and electricity to the processes.
However, there are many factors that affect the
optimal operation of the utility plant. Energy de-
mand from each process varies depending on each
process conditions. Electricity cost is a function of
time, consumption and peak demand. The boiler
operation cost changes according to the fuel type,
boiler load and excess amount of oxygen. The tur-
bine efficiency changes with turbine throughput. To
satisfy the time-varying energy demands and the
optimal operation of the plant simultaneously, we
need an on-line optimization system that can meet
the demand changes and ensure the optimal opea-
tion. An on-line optimization system consists of
process models, gross error detection, data recon-
ciliation, parameter estimation and process optimi-
zation.

Measurement data tend to be contaminated by ran-
dom or gross error and don’t satisfy mass and en-
ergy balances or model equations. As this discrep-

ancy between measurement data and model equa-
tion results in the failure of on-line optimization
based on measurement data, data reconciliation is
important to perform on-line optimization. Data
reconciliation is also necessary to estimate system
parameters such as boiler efficiency, heat transfer
coefficient of heat exchanger which can be used
for process maintenance (Papalexandri et al.,
1996). Several efficient data reconciliation meth-
ods have been proposed (Hodouin and Everell,
1980; Crowe, 1986; Simpson, 1988). However,
these methods are limited to linear system or bi-
linear system, although data reconciliation prob-
lem for industrial plant is usually nonlinear. Thus
SQP (Successive Quadratic Programming) is
commonly used for data reconciliation of nonlin-
ear system (Pierucci et al., 1996; Islam et al.,
1994; Tjoa and Biegler, 1991).

Many researchers have studied the optimization
and optimal design of utility system. Their re-
search can be classified into two categories: ther-
modynamic approach based on thermodynamic
analysis of system performance (Nishio et al.,
1980; Nishio et al., 1985; Chou and Shih, 1987)
and mathematical optimization method such as
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linear programing(LP) (Petroulas and Reklaitis,
1984; Boulilloud, 1969), mixed integer linear pro-
gramming(MILP) (Papoulias and Grossmann, 1983;
Marechal and Kalitventzeff, 1991), nonlinear pro-
gramming(NLP) (Foster 1987; Prokopakis and Ma-
roulis, 1996) and mixed integer nonlinear pro-
gramming(MINLP) (Papalexandri et al., 1996; Pe-
tracci et al.,, 1991). LP showed good result when
only material balance was concerned without en-
ergy balance. As energy balance is required to take
into account thermal conditions, Clark and Helmick
(1980) treated both material and energy balance
using iterative linear programming. Papoulias and
Grossmann(1983) used MILP to represent thermal
condition and usage of units as discrete variables in
optimal synthesis of utility plant.

NLP or MINLP approaches are desirable for the
complete representation of utility system. However,
they did not answer the question of efficient han-
dling of the complexity, which leads to several dif-
ficulties such as local minimum, initial guesses of
the values, more computation time. Thus, we need
an on-line optimization system that can handle the
complexity efficiently while satisfying the required
speed and robustness of the solutions. Although
data reconciliation is performed prior to on-line
optimization for an industrial utility system, most
papers for opimization of utility system did not
cover data reconciliation. Thus, we propose hierar-
chical data reconciliation and optimization ap-
proach and apply it to the data reconciliation and
optimization of utility plant in this paper.

SYSTEM DESCRIPTION AND MODELING
Our system is the industrial utility plant of Hyundai
Petrochemical™ in Korea. The utility system con-
sists of two parts: steam generation part and steam
distribution part. Five boilers produce super-heated
high pressure steam (XPS) in 101 kg/cm’g by burn-
ing two types of fuels, B-C oil and PFO (process
fuel oil). Each boiler can supply maximum 150
tons/hr XPS to steam distribution part. XPS is used
by two turbines to generate electricity and is re-
leased as high pressure steam (HPS) in 43 kg/cm’g,
medium pressure steam (MPS) in 11 kg/cm’g and
low pressure steam (LPS) in 3.3 kg/cm’g through
nine letdown valves. This utility system has two
turbines to generate electricity that is used to meet
the site demand. The first turbine that produces
36MWh in maximum has one extraction stream
from the turbine to HPS header. The second turbine
that generates 61MWh in maximum has two extrac-
tion streams: one from turbine to HPS header and
the other from turbine to MPS header. Two turbines

supply 97MWh using about 690 tons/hr XPS as
an input flow. The utility system has to satisfy the
demands for HPS, MPS, LPS, and electricity from
a variety of processes. The required quality for
each steam is determined based on temperature,
pressure and flowrate. When the generated elec-
tricity is not enough to meet the demand, the elec-
tricity can be purchased from an electrical power
company. The demand change for steam and elec-
tricity are shown in Figure 1. The process values
such as flowrate, temperature, pressure are col-
lected, monitored, and  controlled by
DCS(Distributed control system).
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Figure 1. Demand change for steam and electric-
ity.

Most popular models for on-line data reconcilia-
tion and optimization are equation-based ones
rather than modular-based ones, because equa-
tion-based models offer the flexible selection of
decision variables and possibility of using the
same models for both reconciliation and optimiza-
tion. As an industrial utility plant handles a vari-
ety of streams such as steam, electricity and water
and has many complex and nonlinear unit proc-
esses such as boilers and turbines, the utility sys-
tem model becomes complex nonlinear. The util-
ity model that is based on mass and energy bal-
ance is can be represented as follows.

Mass balance is

zafFi=O,k=l,..,nandi=1,...,s. 1)
i=1

Where k is a node number or a process unit and i
is a stream number. The « represents the state
of stream, input, output, or unrelated stream of k-
th node. Thus, «f has 1 for input, -1 for output

and O for unrelated stream. F; is flowrate of i-th
stream. An energy balance 1s
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Where H; is an enthalpy of i-th stream and a func-
tion of temperature and pressure. Q" and W* are a
heat and a work generated by unit k. As the pres-
sure of each stream is fixed as a desired value for
stable operation, we assume that the enthalpy is a
function of temperature only.

Besides mass and energy balance equations, we
have to obtain characteristic equations to represent
boiler efficiency and generated electricity using the
measurement data from plant. It is very important to
represent boiler efficiency that changes according
to heat load, or produced steam load (Cho 1978).
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Figure 2. Boiler efficiency according to heat load
(Operation data, o :boiler 1, + :boiler 2, * :boiler 3,
x :boiler 4, » boiler 5, Curves are characteristic
equations)

The efficiency of I-th boiler can be expressed as
follows.

M = @ Qurans +b1Qupans + ¢+ 1=1,m . (3)
Where Q,,.. is a heat flowrate, that is transferred
by boiler to produce XPS, and a;, b and ¢, are co-
efficients. We obtain the coefficients for the boiler
efficiency equation (3) using operation data. As
shown in Figure 2, the efficiency of boiler varies
with heat load and five boilers have different effi-
ciency equations respectively.

To represent the generated power from a turbine,
we obtain the relation of generated power (P) as a
function of input and extraction flowrates as fol-
lows

P, =dF,

mput

+eer\l+gJ’ j:L-“sq (4)
Where F,, andF, are flowrates of input and

extraction of turbine, and d,,e, and g, are coeffi-

cients. We obtain the coefficients using operation
data and the result is shown in Figure 3.
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Figure 3. Comparison of operation data and char-
acteristic equation in generated power
( + :operation data, o : characteristic equation )

HIERARCHICAL ON-LINE DATA
RECONCILIATION AND OPTIMIZATION
As process demands for steam and electricity
change several times a day and many decision
variables are involved in determing control
parameters to minimize the cost of utilty system,
on-line data reconciliation and optimization
system is necessary for successful energy
management as shown in Figure 4. DCS receives
process data from utility system and give controls.
Data reconciliation supplies reconciled data for
optimization and process monitoring. Reconciled
data involve measument data, gross error
detection, and paramerter estimation such as
boiler efficiency, heat transfer coefficent of heat
exchanger. Process demand and fault are
monitored by process monitoring system and
optimization gives optimal setpoints to process
controllers. A fast and robust optimization
approach is needed for successful on-line data

reconciliation and optimization.

We propose a hierarchical on-line data reconcilia-
tion and optimization for an industrial utility plant
based on hierarchical decomposition approach
(HDA). If a large and complex system is decom-
posed into several subsystems that are almost
independent of each other and easy to solve, we
can easily solve the whole system by solving the
subsystems and combining the sub-solutions to
generate the final solution. In reality, however,
two difficulties exist for HDA: a) the interaction
between connected subsystems which causes the
discrepancy between state values for the connec-
tion stream, b) a coordination when we combine
subsolutions into a final solution. The proposed



approach introduces the classification of process
variables into three categories: a) common variable
(CV): a state variable for an interconnection stream
between two connected subsystems, e.g. flowrate,
pressure, temperature of the interconnection vari-
able between interconnected subsystems, b) lineari-
zation variable (LV): a variable which linearizes
balance equations when its value is given, e.g. ether
flowrate or temperature in equation (2), or effi-
ciency, heat transfer coefficient, c¢) internal vari-
able (IV): variables of subsystems.

We represent our strategy as shown in Figure 5. We
decompose a system into several subsystems. If the
values for coordinating variables, which consist of
common and linearization variables, are given, each
subsystem becomes independent and linear like the
subsystem 2 in Figure 5. When most of variables
for a subsystem are related to nonlinearity, we can
solve this subsystem using nonlinear programming
method instead of making subsystem linear like the
subsystem 1 in Figure 5.
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Figure 4. On-line data reconciliation and

optimization

During optimization, at the upper level, since the
coordinating variables are related to nonlinearity or

the interconnection between two subsystems, they
should be optimized using more robust nonlinear
optimization algorithms such as SQP. After the
values of coordinating variables are determined at
upper level, coordinating variables become pre-
specified parameters for each subsystem. At the
lower level, each subsystem has only linear con-
straints and is optimized easily by relatively sim-
ple optimization techniques such as LP and least
square(LS). The objective function values of sub-
systems at the lower level optimization are trans-
ferred to the upper level optimization.

CASE STUDIES

The proposed methodology has been applied to
the off-line reconciliation and optimization of an
industrial utility plant of Hyundai Petrochemi-
cal™ in Korea. As the generation and the distribu-
tion of steam are treated independently assigning
the flowrates and temperatures for the connection
streams to common variables, the utility plant has
been decomposed into two subsystems: the boiler
subsystem and the steam distribution subsystem.
The boiler block is composed of five boilers and
the steam distribution block two turbines, four
headers, nine letdown valves and two deaerators.
As the boiler efficiency equation is a quadratic
function of flowrates and enthalpies of several
streams, it is not a good strategy to select all these
variables as linearization variables and to make
boiler subsystem have only linear constraints. To
solve this problem, we solve the steam distribu-
tion subsystem using HDA with temperatures as
linearization variables and then solve the boiler
subsystem using SQP based on the values of
common variables that are calculated at the opti-
mization of steam distribution subsystem.

SQP
Minimize J = J 0+ 1+ Jsuvsystem 2 - +J .
with linear or nonlinear constraints
Ccv CVand LV CV and LV

Jsubsystem ¢ aNd 1V Joubsystem 2 and 1V Jsubsystem n @0d TV
Y Y

Minimize Jo,poyseem 1

with nonlinear constraints

Minimize J

with linear constraints
LPorLS

subsystem 2 Minimize Jsuhsyslkm n

with linear constraints
LPorLS

Figure 5. Optimization based on Hierarchical decomposition approach



Data reconciliation for utility system

HDA is used for the data reconciliation of a
steam distribution subsystem. At upper level,
temperature is optimized using SQP and its
value is transferred into lower level optimization.
At lower level optimization, as pressure can be
specified as a fixed value and the value of tem-
perature is determined at upper level optimiza-
tion, equation (2) becomes linear for flowrate.
As a result, the model for the steam distribution
subsystem which consists of equation (1), (2),
and (4) becomes linear. Data reconciliation
problem for a linear system is well defined and
easy to solve (Tamhane and Mah, 1985). The
objective function for data reconciliation at
lower level is

Minij{nizze TV iower = (F - f:b}::‘ (F - f:)T &)

and constraints are equation (1), (2), and (4).

Where F is a measurement value vector for
flowrates, F is a reconciled value vector which
satisfies constraints, and QE‘ is the inverse

matrix of covariance of F. The objective func-
tion for data reconciliation at upper level is

Mini%ni;:e Jiower = Jiower + (T - Tb%‘ (T - 'T)T . ()

Where Fand T are measurement values of
flowrate and temperature, and T and F are rec-
onciled values. Q;'and Q;' are the inverse of

covariance matrix of Fand T respectively.

For the boiler subsystem, we use the SQP
method due to its nonlinearity. As the boiler
subsystem model is simpler than steam distribu-
tion subsystem model, data reconciliation of
boiler subsystem is relatively easy. We have
generated 20 sets of noisy data for simulation by
adding white noise and used these data as meas-
urement data. The result of data reconciliation
shown in Table 1 is the average of 20 sets. The
SQP shows the results from data reconciliation
using SQP for the whole utility system and HDA
shows the ones from data reconciliation using
HDA. As shown Table 1, HDA shows better
performance in objective function value and
calculation time.

Table 1. Comparison of SQP and HDA for data
reconciliation

Objective func- | Number of | CPU

tion value ileration time(sec)
SQP | 30.8 343 41
HDA | 48.9 8667 746

The reconciled values for temperature and
flowrate show smalier variance than measured
values as shown in Figure 6 and 7. From data
reconciliation, we obtain the information on boiler
efficiency that cannot be measured directly as
shown in Figure 8.
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Figure 6. Data reconiclication of MPS
temperature.
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Figure 7. Data reconciliation of flowrate of HPS.
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Figure 8. Estimation of boiler efficiency using
data reconciliation.

Optimization for utility system

HDA is used for the on-line optimization of steam
distribution subsystem like the case of data recon-
ciliation. At the upper level optimization, tem-
perature is determined using SQP and its value is
transferred into lower level optimization. As con-
straint equations are linear functions of flowrate
and electric power at lower level optimization,
lower level optimization is a linear programming



problem. The objective for lower and upper
level optimization is to minimize heat flowrate
Qurans that is supplied by boiler subsystem.

Minimize J = Qtrans = FxpSprs - bewafw (7)

has equation(1), (2), (4) and steam and electric-
ity demand as constraints. Where Fy,s and Fig,
are flowrates of XPS and boiler feed water and
Hyps and Hyg, are enthalpies of XPS and boiler
feed water.

During the boiler subsystem optimization, we

Table 2. Optimization results for a utility system

minimize the amount of fuel burned in five boilers
producing heat flowrate which has been calcu-
lated from the optimization of the distribution
subsystem using SQP. We perform optimization
using SQP and HDA respectively for three cases
and compare the results as shown in Table 2 and 3.
The result of HDA shows the fuel cost is reduced
by 5.4 — 9.2% compared with the current opera-
tion. The saved cost for fuel is shown in Table 2.
Price of B-C Oil is 0.177 $/kg and annual opera-
tion hour is 8000.

Case Demand Fuel(kg/hr) Savin
number | Fover [HPS MBS TIPS T LT Tupa |
(kw) | (ton/hr) | (ton/hr) | (ton/hr) | P y
1 94047 1202 128 96 56212 53185 | 52771 | 4893866
2 91271 [276 79 59 55140 52269 {52032 | 4420266
3 94642 | 276 79 59 58046 53028 |52734 418133
Table 3. Optimization result for case 1. XPS F 100000 | 149900 | 150000
Initial | SQP HAD From boiler 2 T 510 480 539
100
XPS F 672000 | 65010 644800 XPS F 100000 | 150000 | 149900
T 510 500 500
From boiler 3 T 510 540 492
HPS F 270000 | 263900 | 267200
XPS F 100000 | 116900 | 114900
T 393 370 370
From boiler 4 T 510 499 430
MPS F 233500 { 216700 | 216100
XPS F 100000 § 116500 | 114900
T 273 278 280
From boiler 5 T 510 480 480
LPS F 111000 96400 96000
BFW (boiler F 500000 | 650100 | 644800
T 208 180 180
feed water) T 120 140 140
Letdown F [} 0 o T S 3
:  flowrate r), T: temperature and p:
XPS->HPS T 393 370 370 power(MWh)
Letdown F 68000 67500 71100
HPS>MPS T 273 278 280 CONCLUSIONS
Letdown E 105000 1 96400 56000 As the co.nc?mons of utility system sugh as stgam
S5 and electricity demands change according to time,
MPS>LPS T 208 180 180 on-line data reconciliation and optimization is
Extraction F | 190000 | 176900 | 140300 needed to minimize the energy cost of utility sys-
Turbinel >LPS | T 395 410 410 tem. We propose the hierarchical data reconcilia-
Exmacnon F 50000 | 80100 | 120000 tion and .opti.mizatio.n apprgach l?a.sed on HDA for
) the application to industrial utility system. The
Tubine2->MPS T 395 410 410 .

: proposed approach have significantly reduced the
Extraction 2 F | 160000 | 149200 | 145000 computation time and offered the modular struc-
Turbine2>LPS | T 270 270 270 ture which are easy to maintain and update for
Turbinel P 15 37 39 data reconciliation and optimization. We applied
Torbines > = = = th¥s approach to the data recon(flhatlon and opti-

mization of utility plant by off-line and show that
XPS F | 100000 | 116800 [ 115100 it gives good performance in accuracy and compu-
From boiler 1 T 510 493 495 tation speed enough to be applicable to on-line




data reconciliation and optimization. We are
going to apply this methodology to industrial
utility system by on-line. The proposed method-
ology can be easily applied to on-line data rec-
onciliation and optimization of various systems.
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