• Title/Summary/Keyword: decomposition of rice straw

Search Result 43, Processing Time 0.026 seconds

Comparison of Characteristics of Acid-catalyzed Hydrothermal Fractionation for Production of Hemicellulose Hydrolyzate from Agricultural Residues (농경잔류물로부터 헤미셀룰로오스 가수분해물 생산을 위한 산촉매 열수 분별공정의 특성 비교)

  • Hwang, Jong Seo;Oh, Kyeong Keun;Yoo, Kyung Seun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.414-422
    • /
    • 2022
  • The objective of this work was to investigate the feasibility of acid-catalyzed hydrothermal fractionation for maximum solubilization of the hemicellulosic portion of two typical agricultural residues. The fractionation conditions converted into combined reaction severity (CS) in the range of 1.2-2.9 was used to establish a simple reaction criteria at glance. The hemicellulosic sugar yield of 56.6% was shown when rice straw was fractionated at the conditions at the conditions; 160 ℃ of temperature 0.75% (w/v) of H2SO4, 20 min of reaction time, 1:15 solid/liquid ratio. The hemicellulosic sugar yield of 83.0%, however, was achieved when barley straw was fractionated at the conditions at the conditions; 150 ℃ of temperature 0.75% (w/v) of H2SO4, and 15 min of reaction time, 1:10 solid/liquid ratio. For barley straw, acid-catalyzed hydrothermal fractionation could be effectively performed. After the fractionation process, the remaining fractionated solids were 48.5% and 57.5% from raw rice and barley straws, respectively. The XMG contents in the solid residues decreased from 17.3% and 17.6% to 6.0% and 2.6%, which corresponded to 16.7% and 8.5% on the basis of the raw straws, respectively. In another way, only 5.6% of cellulose and 8.5% of XMG were lost due to excessive decomposition during the acid-catalyzed hydrothermal fractionation of barley straw, compared to cellulose and XMG losses of 6.4% and 26.6% in rice straw. Hemicellulosic sugars from the rice straw were considered more over-decomposed due to the somewhat higher reaction severity at the acid-catalyzed hydrothermal fractionation.

A Study on the Characteristics of Humic Materials Extracted from Decomposing Plant Residues -III. Amino Acids in the Acid Hydrolysates of Humic Acids Extracted from Straw of Rice and Barley (식물성(植物性) 유기질(有機質)의 부숙과정중(腐熟過程中) 부식특성(腐植特性)에 관(關)한 연구(硏究) -III. 볏짚과 보리짚부식산(腐植酸)의 산가수분해(酸加水分解) 용액중(溶液中) Amino 산(酸)의 함량(含量))

  • Kim, Jeong-Je;Lee, Wi-Young;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.301-306
    • /
    • 1988
  • Contents and distribution of amino acids in the hydrolysates of humic acids extracted from straw of rice and barley at three different dates during decomposition were examined. The results obtained from this study may be summed up as the following: 1. There are differences between the humic acid hydrolysates from rice straw and barley straw in regards of composition of humic acids and distribution of amino acids. 2. Neutral amino acids as a group occupy the largest share, followed by acidic amino acids and basic amino acids. 3. The total amount of amino acids per gram of humic acid is greater in straw of rice than in straw of barley. 4. With the humification progressing the content of lysine increases, but the content of histidine decreases. In general glycine, glutamic acid, aspartic acid, alanine and leucine constitute the 5 predominant amino acids in all hydrolysates. 5. Arginine is not detected at all in any of the hydrolysates of humic acids obtained from humified materials. 6. The presence of phenylalanine and tyrosine is an evidence for the aromatic characteristics of humic acids.

  • PDF

Change of Solubilization Characteristics of Rice Straw by Different Pre-treatments (전처리 방법에 따른 볏짚의 가용화 특성 변화)

  • Hong, Seung-Gil;Shin, JoungDu;Heo, Jeong-Wook;Park, Woo-Kyun;Kwon, Soon-Ik;Park, Noh-Back;Shin, Hyun-Seon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • In order to find a feasibility of applying an agricultural biomass to the anaerobic digestion system, the effects of pre-treatment of rice straw was investigated by different sizes,temperatures, ultrasonic frequencies, and with/without NaOH treatment on the change of soluble organic matter, which is generated most dominantly in Korea. It was observed that SCOD(soluble chemical oxygen demand) as the index for the decomposition of rice straw increased with the smaller particle size, higher reaction temperature and alkali treatment. With treatment of 5% NaOH, it was shown that the highest concentrations of SCOD were observed at 9,000 mg $L^{-1}$ and 6,000mg $L^{-1}$ at $35^{\circ}C$ and $55^{\circ}C$, respectively. Agitating with ultrasonic irradiation could be enhanced SCOD of rice straw less than 3 cm with 40 kHz of ultrasound. Optimal RPM in this study was at 150 rpm regardless of reaction temperatures.

Effect of Soil Respiration on Light Fraction-C and N Availability in Soil Applied with Organic Matter

  • Ko, Byong-Gu;Lee, Chang-Hoon;Kim, Myung-Sook;Kim, Gun-Yeob;Park, Seong-Jin;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • Soil respiration has been recognized as a key factor of the change of organic matter and fertility due to the carbon and nitrogen mineralization. In this study, we evaluated the effect of soil respiration on the light fraction-C and inorganic N content depending on temperature in soil applied with organic matter. Soil respiration was calculated by using total $CO_2$ flux released from soil applied with $2Mg\;ha^{-1}$ of rice straw compost and rye for 8 weeks incubation at 15, 25, $35^{\circ}C$ under incubation test. After incubation test, light fraction and inorganic N content were investigated. Rye application dramatically increased soil respiration with increasing temperature. $Q_{10}$ value of rye application was 1.69, which was higher 27% than that of rice straw compost application. Light-C and $NO_3-N$ contents were negatively correlated to soil respiration. Light-C in rye application more decreased than that in rice straw compost with temperature levels. These results indicate that temperature sensitivity of soil respiration could affect soil organic mater content and N availability in soil due to carbon availability. Also, light fraction would be useful indicator to evaluate decomposition rate of organic matter in soil under a short-term test.

Effects of Green Manures on Rice using P32 (P32를 이용한 녹비의 수도에 대한 비효에 관하여)

  • 김길환
    • Journal of Plant Biology
    • /
    • v.11 no.3
    • /
    • pp.1-7
    • /
    • 1968
  • Organic matter in rice-paddy soils exercises two antagonistic effects on the rice plant under water-logged conditions in growing season in the course of its decomposition: It liberates mineral nutrients and promotes soil fertility. On the other hand, however, it demands oxygen for its decay and therefore competes with rice roots for this element, when applied in large quantity of fresh status. For the practical end of rice culture, it is most desirable that these two effects should not contend with each other. To determine the proper content of organic materials to be applied, the influences of varied amounts of a homogeneous mixture of dried green manure, ranging from 0 to 20g/pot (1/20,000 tanbo), upon hte growth of rice was investigated in a sand culture. Labeled phosphorus fertilizer was also used in the form of KH232PO4 to evaluate the availability of this nutrient in the soil. Under the present experimental conditions, green mature seems to have influenced little on the growth of rice, except on number of grains produced and grains/straw ratio. Moreover, no sympton of growth inhibition is obsrvable even by the largest amount of its application. The available phosphorus, as estimated by A-value, appears to have increased, as the amount of organic materials applied increases. In view of the fact that pure sand instead of a paddy soil is used in this culture, the present results would not be directly applicable to practical rice farming. Besides, the estimated A-value is in need of further study, since it varies according to method of application, as suggested by Nishigki et. al. (1958).

  • PDF

Characteristics and Distribution of Microorganisms in a Rice Straw Compost for Cultivation of Button Mushrooms (Agaricus bisporus) (양송이 재배에서 볏짚 배지의 발효 단계별 관여 미생물의 분포양상 및 특성)

  • Lee, Chan-Jung;Yoo, Young-Mi;Moon, Ji-Won;Cheong, Jong-Chun;Kong, Won-Sik;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho;Sa, Tong-min
    • The Korean Journal of Mycology
    • /
    • v.45 no.1
    • /
    • pp.43-53
    • /
    • 2017
  • In this study, we analyzed the densities and taxonomic characteristics of various microorganisms that play important roles in Agaricus bisporus culture medium composting, and examined changes in the levels of decomposition-related enzymes secreted by these microorganisms. Various microorganisms such as thermophilic bacteria, actinomycetes, fluorescent Pseudomonas spp., and filamentous bacteria are closely associated with culture medium composts of Agaricus bisporus. The population densities of microorganisms change, and harmful bacteria disappear during thermophilic composting. Psychrobacter sp., Pseudomonas sp., Bacillus sp., and Pseudoxanthomonas sp. accounted for the highest proportion of bacteria in the culture media during outdoor composting, whereas Bacillus sp. and Psychrobacillus sp. were dominant after pasteurization. Cellulose and hemicellulose enzymes of the microorganisms were important at an early stage of rice straw composting and after decomposition of carbon sources, respectively. Microorganisms that secreted these enzymes were present in the second and third turning stage of composting.

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

Design of Pretreatment Process in Cellulosic Ethanol Production (목질계 셀룰로오스 에탄올 생산공정에서 전처리과정의 설계)

  • Kim, Hyungjin;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.511-514
    • /
    • 2015
  • A pretreatment process of cellulose decomposition to a monosaccharide plays an important role in the cellulosic ethanol production using the lignocellulosic biomass. In this study, a cellulosic ethanol was produced by using acidic hydrolysis and enzymatic saccharification process from the lignocellulosic biomass such as rice straw, sawdust, copying paper and newspaper. Three different pretreatment processes were compared; the acidic hydrolysis ($100^{\circ}C$, 1 h) using 10~30 wt% of sulfuric acid, the enzymatic saccharification (30 min) using celluclast ($55^{\circ}C$, pH = 5.0), AMG ($60^{\circ}C$, pH = 4.5), and spirizyme ($60^{\circ}C$, pH = 4.2) and also the hybrid process (enzymatic saccharification after acidic hydrolysis). The yield of cellulosic ethanol conversion with those pretreatment processes were obtained as the following order : hybrid process > acidic hydrolysis > enzymatic saccharification. The optimum fermentation time was proven to be two days in this work. The yield of cellulosic ethanol conversion using celluclast after the acidic hydrolysis with 20 wt% sulfuric acid were obtained as the following order : sawdust > rice straw > copying paper > newspaper when conducting enzymatic saccharification.