• Title/Summary/Keyword: decomposition efficiency

Search Result 671, Processing Time 0.025 seconds

Algorithm for the Constrained Chebyshev Estimation in Linear Regression

  • Kim, Bu-yong
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • This article is concerned with the algorithm for the Chebyshev estimation with/without linear equality and/or inequality constraints. The algorithm employs a linear scaling transformation scheme to reduce the computational burden which is induced when the data set is quite large. The convergence of the proposed algorithm is proved. And the updating and orthogonal decomposition techniques are considered to improve the computational efficiency and numerical stability.

  • PDF

Design Optimization of Transonic Wing/Fuselage System Using Proper Orthogona1 Decomposition (Proper Orthogonal Decomposition을 이용한 천음속 날개/동체 모텔의 최적설계)

  • Park, Kyung-Hyun;Jun, Sang-Ook;Cho, Maeng-Hyo;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.414-420
    • /
    • 2010
  • This paper presents a validation of the accuracy of a reduced order model(ROM) and the efficiency of the design optimization using a Proper Orthogonal Decomposition(POD) to transonic wing/fuselage system. Three dimensional Euler equations are solved to extrude snapshot data of the full order aerodynamic analysis, and then a set of POD basis vectors reproducing the behavior of flow around the wing/fuselage system is calculated from these snapshots. In this study, reduced order model constructed through this procedure is applied to several validation cases, and then it is confirmed that the ROM has the capability of the prediction of flow field in the space of interest. Additionally, after the design optimization of the wing/fuselage system with the ROM is performed, results of the ROM are compared with results of the design optimization using response surface model(RSM). From these, it can be confirmed that the design optimization with the ROM is more efficient than RSM.

Domain Decomposition Strategy for Pin-wise Full-Core Monte Carlo Depletion Calculation with the Reactor Monte Carlo Code

  • Liang, Jingang;Wang, Kan;Qiu, Yishu;Chai, Xiaoming;Qiang, Shenglong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.635-641
    • /
    • 2016
  • Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

Electrokinetic-Fenton Process for Removal of Phenanthrene (동전기-펜턴 공정을 이용한 phenanthrene 오염토양의 정화)

  • 양지원;박지연;김상준;이유진;기대정
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • Feasibility of electrokinetic process combined with Fenton-like reaction was investigated for the removal of phenanthrene from contaminated soil. Transport of hydrogen peroxide by electroosmosis and decomposition of phenanthrene by Fenton-like reaction were observed in a model system. Electrical potential gradient and electroosmotic flow (EOF) at 10 mA were higher than those at 5 mA. High accumulated EOF resulted in high removal efficiency of phenanthrene because the large amount of hydrogen peroxide was transfered through the soil. Removal efficiency of phenanthrene by water washing was 8.5% for 7 days. The highest removal efficiency including phenanthrene decomposition was 95.6% for 14 days. After the operation, soil samples with removal efficiency of 95.6% showed low concentrations of phenanthrene and its intermediates. From this result, it was presumed that phenanthrene was decomposed to small molecules or mineralized to water and carbon dioxide due to continuous supply of hydrogen peroxide by electroosmotic flow.

The Mixed Finite Element Analysis for Porous Media using Domain Decomposition Method (영역 분할기법을 이용한 포화 다공질매체의 혼합유한요소해석)

  • Lee, Kyung-Jae;Tak, Moon-Ho;Kang, Yoon-Sik;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The mixed finite element analysis is the most widely used method for saturated porous media. Generally, in this method, direct method and iterative method are proposed to obtain unknown variable, however, the iterative method is recommended because the method provide numerical stability and accuracy under the material properties for solid and fluid are different. In this paper, we introduce staggered method which has strong numerical stability, and FETI(Finite Element Tearing and Interconnecting) which is one of decomposition methods are applied into the method in order to obtain numerical efficiency. In which, Lagrange Multipliers and conjugated gradient method to solve decomposed domain are proposed, and then, the proposed method is verified numerical efficiency by point to point MPI(Message Passing Interface) library.

Photocatalytic Property of Nano-Structured TiO$_2$ Thermal Sprayed Coating - Part II: TiO$_2$ -WO$_3$ Coating - (나노구조 TiO$_2$용사코팅의 미세조직 제어 공정기술 개발과 광촉매 특성평가 - Part II: TiO$_2$- WO$_3$ 코팅 -)

  • 이창훈;최한신;이창희;김형준;신동우
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.46-55
    • /
    • 2003
  • TiO$_2$-WO$_3$(8.2wt%) coatings were prepared by the APS (Atmospheric Plasma Spraying) process to clarify the relationship between the process parameters(H$_2$ gas flow rate of plasma 2nd gas and spraying distance) of the APS coating and photo-decomposition efficiency kinetics of the MB(methylene blue) aqueous solution decomposition and to understand the effect of addition of WO$_3$ on photocatalytic properties of TiO$_2$ sprayed coating. Further, the temperature and velocity of flying particles were measured by DPV-2000 to investigate the relationship between microstructure of coatings and process parameters. Properties of coatins were investigated by XRD, SEM, XPS, RAMAN, UV/VIS spectrometer. In case of the TiO$_2$-WO$_3$(8.2wt%) coating, it had a lower anatase fraction than that of pure-TiO$_2$ coatings because of flying in the higher temperature plasma plume by the heavy weight of TiO$_2$, WO$_3$. And, when WO$_3$ added powders were spayed, the doping effects of W ions substituted into the Ti ion sites was not occured during melting and solidification cycles of spraying. It was found that the addition of WO$_3$ was ineffective effective on increasing photo-decomposition efficiency of TiO$_2$ sprayed coating.

A Study on Particulate Matter Formed from Plasma Decomposition of SF6 (SF6의 플라즈마 분해로부터 생성된 입자상 물질에 관한 연구)

  • Kim, Seon-Woo;Kim, Jong-Bum;Kim, Jae-Hwan;Kim, Rae-Hyeong;Ryu, Jae-Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.326-332
    • /
    • 2017
  • $SF_6$ (sulfur hexafluoride) gas has an extremely high global warming potential (GWP). Therefore, there has been an effort to reduce of $SF_6$ its emission into atmosphere. In this study, $SF_6$ was injected into the plasma reactor directly, decomposed particulate matter of $SF_6$ was analyzed. Destruction and removal efficiency (DRE) of $SF_6$ were tested with varying degrees of plasma power and initial concentrations of $SF_6$ (1,000 ppm). This study is conducted with plasma power which are 4.4 kW, 5.5 kW, 6.0 kW, 6.6 kW, 7.6 kW, 8.1 kW and 9.1 kW. It was confirmed through experiment that the decomposition efficiency of $SF_6$ is 100% at 7.6 kW of the plasma power. In addition, the particulate matter is formed as minute particles of which size is $1{\mu}m$ and the main component of particulate matter is identified as $AlF_3$.

Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production

  • Mandal, Subhasis;Jana, Amiya K.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • In this article, we develop a reactive distillation (RD) column configuration for the production of hydrogen. This RD column is in the HI decomposition section of the sulphur - iodine (SI) thermochemical cycle, in which HI decomposition and H2 separation take place simultaneously. The section plays a major role in high hydrogen production efficiency (that depends on reaction conversion and separation efficiency) of the SI cycle. In the column simulation, the rigorous thermodynamic phase equilibrium and reaction kinetic model are used. The tuning parameters involved in phase equilibrium model are dependent on interactive components and system temperature. For kinetic model, parameter values are adopted from the Aspen flowsheet simulator. Interestingly, there is no side reaction (e.g., solvation reaction, electrolyte decomposition and polyiodide formation) considered aiming to make the proposed model simple that leads to a challenging prediction. The process parameters are determined on the basis of optimal hydrogen production as reflux ratio = 0.87, total number of stages = 19 and feeding point at 8th stage. With this, the column operates at a reasonably low pressure (i.e., 8 bar) and produces hydrogen in the distillate with a desired composition (H2 = 9.18 mol%, H2O = 88.27 mol% and HI = 2.54 mol%). Finally, the results are compared with other model simulations. It is observed that the proposed scheme leads to consume a reasonably low energy requirement of 327 MJ/kmol of H2.

Decomposition of Antibiotics (Cefaclor) by Ionizing Radiation: Optimization and Modeling Using a Design of Experiment (DOE) Based on Statistical Analysis

  • Yu, Seung-Ho;Chang, Soon-Woong;Lee, Si-Jin;Cho, Il-Hyoung
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.81-87
    • /
    • 2009
  • The decomposition of antibiotics (cefaclor) by gamma irradiation in aqueous solutions was experimentally evaluated. To obtain a mutual interaction between two factors (antibiotics concentrations and radiation doses) and to optimize these factors during the process, experimental design and statistical analysis were employed. The decomposition capability of the gamma radiation was also mathematically described as a function of cefaclor concentration and gamma-ray dose using the statistical analysis. The results showed that the cefaclor concentration ($X_1$) in the response $Y_1$ (Reduction of cefaclor concentration) and gamma-ray dose ($X_2$) in the response $Y_2$ (Removal efficiency (%) of cefaclor concentration) exhibited a significantly positive effect, whereas gamma-ray dose ($X_2$) in the response $Y_1$ showed a significantly negative effect. The estimated ridge of maximum responses and optimal conditions for $Y_1$:($X_1$,$X_2$)=(25 mg/L, 350 Gy) and $Y_2$:($X_1$,$X_2$)=(21 mg/L, 565 Gy) using canonical analysis were 4.37 mg/L of reduction of cefaclor concentration and 98.35% of removal efficiency of cefaclor concentration, respectively. The measurement values agreed well with the predicted ones, thereby confirming the suitability of the model for $Y_1$ and $Y_2$ and the success of the experimental design in optimizing the conditions of the gamma irradiation process.