• Title/Summary/Keyword: decoding code

Search Result 513, Processing Time 0.031 seconds

A reversible variable length code with an efficient table memory (효율적인 테이블 메모리를 갖는 가역 가변길이 부호)

  • 임선웅;배황식;정정화
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.133-136
    • /
    • 2000
  • A RVLC(Reversible Variable Length Code) with an efficient table memory is proposed in this paper. In the conventional decoding methods, the weight of symbols and code values are used for the decoding table. These methods can be applied for Huffman decoding. In VLC decoding, many studies have been done for memory efficiency and decoding speed. We propose an improved table construction method for general VLC and RVLC decoding, which uses the transition number of bits within a symbol with an enhanced weight decomposition. In this method, tile table for RVLC decoding can be implemented with a smaller memory

  • PDF

A New Decoding Method of Turbo Code (터보코드의 복호화 기법)

  • Park Sung-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.87-93
    • /
    • 2005
  • In this paper we propose a new iterative decoding method of turbo code which computes the log-likelihood ratios at each MAP (maximum a posteriori) decoder in parallel in each iteration step and combines them with proper weights to produce better decisions. Our results indicate that the proposed decoding method is particularly useful for systems with limited number of iterations and low code rates.

  • PDF

Algorithm of Decoding the Data Codeword in Two-Dimensional QR Code (이차원 QR Code에서 데이터 코드워드의 디코딩 알고리즘)

  • Park, Kwang Wook;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.4
    • /
    • pp.21-29
    • /
    • 2013
  • Two-dimensional QR Code has improved greatly the limits on the capacity, size, direction of the one-dimensional bar code. And it has the capacity of compressing and storing the massive amount of data and is widely used in many applications. Recently, the two-dimensional QR Code has been spread rapidly because of introducing the smart phones and increasing the amount of using them. However, there is little documentations about decoding the QR Code in which can store the large amount of information. In this paper, therefore, we present specific processing procedures and algorithms on decoding the two-dimensional QR Code and then make us understand their decoding process by explaining some examples.

A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC Code Using Neural Network

  • Xu, Zuohong;Zhu, Jiang;Zhang, Zixuan;Cheng, Qian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3749-3768
    • /
    • 2018
  • As one of the most potential types of low-density parity-check (LDPC) codes, CPM-QC-LDPC code has considerable advantages but there still exist some limitations in practical application, for example, the existing decoding algorithm has a low convergence rate and a high decoding complexity. According to the structural property of this code, we propose a new method based on a CPM-RID decoding algorithm that decodes block-by-block with weights, which are obtained by neural network training. From the simulation results, we can conclude that our proposed method not only improves the bit error rate and frame error rate performance but also increases the convergence rate, when compared with the original CPM-RID decoding algorithm and scaled MSA algorithm.

Performance Comparison of Concatenated Codes with Different Inner Decoding Schemes in Frequency-Hopping Spread Spectrum Multiple-Access Channels (주파수 도약 대역확산 다중접속 채널에서 내 부호 복호화 기법에 따른 쇄상부호의 성능 비교)

  • Lee, Ye Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • In this paper, we analyze the performance of a concatenated code with two different inner decoding schemes. One is the error-detecting inner decoding, and the other is the error-detecting-and-correcting inner decoding scheme. We compare the performances of the two decoding schemes for finite and infinite block length cases when the concatenated code is applied to slow frequency-hopping spread-spectrum multiple access (FH-SSMA) communication systems.

Serial Concatenation of Space-Time and Recursive Convolutional Codes

  • Ko, Young-Jo;Kim, Jung-Im
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.144-147
    • /
    • 2003
  • We propose a new serial concatenation scheme for space-time and recursive convolutional codes, in which a space-time code is used as the outer code and a single recursive convolutional code as the inner code. We discuss previously proposed serial concatenation schemes employing multiple inner codes and compare them with the new one. The proposed method and the previous one with joint decoding, both performing a combined decoding of the simultaneous output signals from multiple antennas, give a large performance gain over the separate decoding method. In decoding complexity, the new concatenation scheme has a lower complexity compared with the multiple encoding/joint decoding scheme due to the use of the single inner code. Simulation results for a communication system with two transmit and one receive antennas in a quasi-static Rayleigh fading channel show that the proposed scheme outperforms the previous schemes.

  • PDF

Decoding of LT-Like Codes in the Absence of Degree-One Code Symbols

  • Abdulkhaleq, Nadhir I.;Gazi, Orhan
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.896-902
    • /
    • 2016
  • Luby transform (LT) codes were the first practical rateless erasure codes proposed in the literature. The performances of these codes, which are iteratively decoded using belief propagation algorithms, depend on the degree distribution used to generate the coded symbols. The existence of degree-one coded symbols is essential for the starting and continuation of the decoding process. The absence of a degree-one coded symbol at any instant of an iterative decoding operation results in decoding failure. To alleviate this problem, we proposed a method used in the absence of a degree-one code symbol to overcome a stuck decoding operation and its continuation. The simulation results show that the proposed approach provides a better performance than a conventional LT code and memory-based robust soliton distributed LT code, as well as that of a Gaussian elimination assisted LT code, particularly for short data lengths.

Erasure Decoding Method of RS-Convolutional Concatenated Code in Frequency-Hopping Spread Spectrum of Partial Band Jamming Environment. (부분대역 간섭 환경의 주파수도약 대역확산 시스템에서 RS-콘볼루션 연쇄부호의 Erasure 복호방식)

  • 강병무;유흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1960-1965
    • /
    • 1999
  • In this paper, we propose a new method of erased concatenated code with RS-convolutional code. In the method, we make use of erasure for undecoded information when we have some errors in RS decoding. For decoding with erasure, the method is processed inner decoding and outer decoding again. After the erasure decoding, if the decoding result is better than the previous one, then we use this result. If not, use the previous one. In this paper, we use concatenated RS(63,31)-convolutional(4.1/2) code. Simulation result is compared with calculation result for performance analysis. According to the result, the proposed method has better performance than the others without erasure such that 2dB when 0.5$\leq\rho\leq$1 and 4dB when $\rho\leq$0.3.

  • PDF

An Improved Decoding Scheme of Hamming Codes using Soft Values (소프트 값을 이용한 해밍 부호의 개선된 복호 방식)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • In this paper, we propose a syndrome decoding scheme that can correct two errors for single error correcting Hamming codes within a code length. The decoding scheme proposed in this paper has the advantage of significantly improving the error rate performance compared to the decoder complexity by correcting multiple errors without substantially increasing the decoding complexity. It is suitable for applications in which the energy use of encoder/decoder is extremely limited and the low error rate performance is required, such as IoT communications and molecular communications. In order to verify the improvement of the error rate performance of the Hamming code with the proposed decoding scheme, we performed simulation on Hamming codes with short code length in the AWGN and BPSK modulation environments. As a result, compared with the conventional decoding method, the proposed decoding scheme showed performance improvement of about 1.1 ~ 1.2[dB] regardless of the code length of the Hamming code.