
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, Aug. 2018 3749
Copyright ⓒ 2018 KSII

A Weighted Block-by-Block Decoding
Algorithm for CPM-QC-LDPC Code Using

Neural Network

Zuohong Xu1, Jiang Zhu1, Zixuan Zhang2 and Qian Cheng1
1 College of Electronic Science and Engineering, National University of Defense Technology

Changsha, 410073 - China
 [e-mail: zuohong.xu@outlook.com, jangzhu@nudt.edu.cn, chengqian14a@nudt.edu.cn]

2 College of Computer, National University of Defense Technology
Changsha, 410073 - China

[e-mail:sssss976@outlook.com]
*Corresponding author: Jiang Zhu

Received November 15, 2017; revised February 2, 2018; accepted February 28, 2018;

published August 31, 2018

Abstract

As one of the most potential types of low-density parity-check (LDPC) codes,
CPM-QC-LDPC code has considerable advantages but there still exist some limitations in
practical application, for example, the existing decoding algorithm has a low convergence rate
and a high decoding complexity. According to the structural property of this code, we propose
a new method based on a CPM-RID decoding algorithm that decodes block-by-block with
weights, which are obtained by neural network training. From the simulation results, we can
conclude that our proposed method not only improves the bit error rate and frame error rate
performance but also increases the convergence rate, when compared with the original
CPM-RID decoding algorithm and scaled MSA algorithm.

Keywords: CPM-QC-LDPC code; CPM-RID decoding algorithm; neural network; weights;
bit error rate; frame error rate; convergence rate

http://doi.org/10.3837/tiis.2018.08.011 ISSN : 1976-7277

mailto:zuohong.xu@outlook.com
mailto:jangzhu@nudt.edu.cn

3750 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

1. Introduction

Among many various types of channel codes, low-density parity-check (LDPC) code [1] is
currently one of the most promising one. It has been adopted in many applications as the
standard code for better performance, for example, the IEEE 802.11n, IEEE 802.16e, IEEE
802.20 standards and satellite, wireless and optical communication systems, hard disk drives
and flash memories [2–7]. Therefore, designing the most efficient type of LDPC code is an
essential issue.

According to much of the existing literature [8–13], quasi-cyclic (QC) LDPC code is
considered the most preferred type for designing LDPC code. QC-LDPC code is given by the
null space of an array (H) of sparse circulant matrices of the same size over a finite field
(binary or non-binary) [2]. In some constructions of QC-LDPC code, the sparse circulant
matrices in H are all circulant permutation matrices (CPMs). Such types of LDPC code are
abbreviated as CPM-QC-LDPC code.

In general, CPM-QC-LDPC code has many advantages over any other existing types of
LDPC code, especially in terms of encoding and decoding complexity of hardware
implementation. In the process of decoding, the CPM-structure of H allows some novel
techniques to reduce the size of hardware resources and the complexity of hardware
implementation. However, there are some restrictions for the existing decoding algorithm of
CPM-QC-LDPC code, such as low convergence rate, relatively high bit error rate (BER) and
high decoding complexity, which have aroused our great interest in improving these aspects.

The classical iterative decoding algorithm of LDPC code is sum-product algorithm (SPA),
which can be represented based on a Tanner graph. To reduce its high hardware
implementation complexity, many approximations to SPA algorithm have been proposed. One
well-known method is the scaled min-sum algorithm (scaled MSA), but the hardware
implementation complexity is still too high. In reference [11], authors presented a decoding
scheme called revolving iterative decoding (RID) for CPM-QC-LDPC code, which can
efficiently reduce the hardware implementation complexity. However, it needs to perform
specific column and row permutations to transform the parity check matrix, which changes the
structure of CPMs. Another efficient algorithm is proposed in [14–16], in which authors take
the advantages of the structural properties of CPM, and improve the revolving iterative
decoding (CPM-RID) algorithm, which can also reduce the decoding complexity in an
efficient way. As far as we know, it is rather rare to find the applications of a neural network
(NN) in decoding CPM-QC-LDPC code. Thus, we are the first to propose combining the
CPM-RID decoding algorithm with a NN to decode the CPM-QC-LDPC code.

The traditional approach of a NN [17,18] is to train the neural network with a large dataset
containing all codewords, and the output is expected to get the correct codeword from the
noisy channel. Unfortunately, the number of codewords tends to be massive. For example, for
a linear block code of length 100 with rate 0.5, there are 502 different codewords; therefore, it is
impossible to fully train a NN in practical implementation. To overcome this issue, recent
literature [19,20] established a NN based on a Tanner graph and an iterative decoding
algorithm, and uses an all-zero codeword to train and assign weights to the edges of the Tanner
graph for linear codes. The simulation results prove its reasonability but the training procedure
is too complicated and of high complexity. Furthermore, literature [21] has constructed a new
multi-layer model to iteratively decode LDPC code, but this only applies to short code.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3751

In this paper, we use NN to train the weights in a Tanner graph, make some modifications to
the original CPM-RID algorithm and combine them together as our proposed method. Firstly,
we construct a simple activation function stimulated by [21] for NN to train and assign weights
to the edges of the Tanner graph. The training procedure of our model is much simpler than
that in Reference [19,20] and it does not need a large training dataset. Then, we modify the
original CPM-RID algorithm by directly dividing the parity check matrix into several
submatrices, which can reduce the decoding delay and increase the convergence rate by
adapting a certain decoding scheme, like serial mechanism.

The rest of the paper is arranged as follows. Section 2 gives an overview of the general
procedure of constructing the CPM-QC-LDPC code and the original CPM-RID decoding
algorithm. Our proposed decoding algorithm is introduced and explained in Section 3. Then,
Section 4 conducts some necessary experiments to verify its improved decoding performance
and faster convergence rate than that of the original CPM-RID algorithm and scaled MSA
algorithm. Then we also give some analysis about the decoder complexity and computational
complexity. In the final section, we make a conclusion about our proposed algorithm.

2. Review on CPM-QC-LDPC Code and CPM-RID Decoding Algorithm

2.1 A General Construction of CPM-QC-LDPC Code
In this subsection, we overview the general method of how to construct the CPM-QC-LDPC
code [11,13,14].

Let GF(q) be a Galois field and α be a primitive element. All the elements of GF(q) can be
represented by using the powers of α : 0 1 2{ 0, 1, ,..., }qα α α α−∞ −= = . We construct two arbitrary
sets 0 1 1

1 { , ,..., }mi iiS α α α −= and 0 11
2 { , ,..., }nj jjS α α α −= with no intersection and make sure all the

elements are contained in these two sets. Next, we use 1S and 2S to form a base matrix

0 ,0[]k li j
k m l nα α ≤ < ≤ <= +B . Notice that the base matrix B has good structural properties in making

the H matrix of LDPC, which has no length-4 cycle. By using the elements (0 1)j j qα ≤ < −
of B , we can produce a vector ,1(0 , 0,0,),… … with length of (1)q − , where its -thj entry
equals to 1. After cyclically shifting all the entries right by one place each time, we obtain a
new vector for each shift. Thereby, we will have (1)q − vectors which form a (1)(1)q q× −−
circulant permutation matrix A (CPM), denoted by ()jαA . Noticeably, the -thj entry of the
top row is 1, and all rows and columns are cyclical shifts of the previous row and column,
respectively.

If we replace each entry of B by its corresponding CPM ()jαA , and let H be an m n×
array of CPMs with the size of (1)(1)q q× −− , that is, H is an (1) (1)m q n q× −− matrix over
GF(2). Then H is an M N× matrix which can be expressed as

0,0 0,1 0, 10

1,0 1,1 1, 11

1 1,0 1,1 1, 1

,

n

n

m m m m n

−

−

− − − − −

 = =

A A AH
A A AH

H

H A A A

(1)
where the submatrix iH is a (1)1) (nq q× −− matrix containing n CPMs and each ,i jA
represents a (1)(1)q q× −− CPM. It is easy to conclude that iH also possesses the property of

3752 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

cyclical shifts like CPMs but not the same, since iH has more than one CPM (each iH has n
CPMs). This structure allows it to cyclically shift all entries of one row only within their
corresponding CPM for one time (we call this process cyclical shift within the sections).

2.2 The CPM-QC-LDPC Decoding Algorithm
Let H be an m n× array of CPMs with the size of (1)(1)q q× −− and iH , which contains n
CPMs with the size of (1)(1)q q× −− , be the i -th row-block of H . Let

, , ,0 , ,1 , , 1(, ,...,)k s k s k s k s n−=h h h h represent the s -th row of kH with n sections. Each section

, , {0,1,..., 1}k s i i n∈ −h ， contains (1)q − elements (the -ths row of the -thi CPM). Thus, the expression of

kH can be represented as

,0 ,1 , 1

,0,0 ,0,2 ,0, 1

,1,0 ,1,2 ,1, 1

, 2,0 , 2

, ...
, ...

,

k k k k n

k k k n

k k k n

k q k q

−

−

−

− −

 =

=

H A A A

h h h
h h h

h h

,2 , 2, 1

.

 ... k q n− −

 h

 (2)

It is easy to see that if we cyclically shift all the n sections of ,k sh one place to the right
within the sections, we will get the (1)s + -th row , 1k s+h of kH . Thus, all rows of kH can be
obtained by only cyclically shifting the first row of kH within the sections. Similarly, all
submatrices 0 1 1, ,..., m−H H H can also be obtained by only cyclically shifting the first rows of all
submatrices within the sections.

Let *
0H be the (1)m n q× − matrix consisting of all first rows 0,0 1,0 1,0, ,..., m−h h h of arrays

0 1 1,.. ,, . m−HH H . By cyclically shifting the *
0H within the sections 2q − times, we can obtain

the whole parity check matrix H .
This structure property is of great benefit to the practical applications of CPM-QC-LDPC

codes [14] in the sense that we can decode based on the submatrix *
0H alone. Every time we

decode the matrix *
0H , the reliabilities of the received symbols are updated with a chosen

reliability updating algorithm. Then, the reliability vector and the received sequence are
cyclically shifted and used as the input information to carry out the next decoding. After
decoding the whole H matrix, a hard-decision vector z is formed based on the reliabilities of
the decoded symbols. By computing the syndrome mod(,2)· T=s z H , we can decide whether
vector z is the codeword. If it equals to 0 , the decoding process stops and z is the codeword,
otherwise the decoding process continues until the codeword is found or it exceeds the pre-set
iteration number.

From the structure of *
0H , we can conclude that the number of rows in *

0H is only 1/ (1)q −
of H , so in the procedure of implementing the hardware decoder, the size of message
processing units for check nodes as well as the number of wires that connect to the check
nodes and variable nodes are reduced to 1/ (1)q − of those in H .

3. The Proposed Decoding Algorithm

3.1 The Establishment of Training Model

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3753

At first, the transmitted information vector is entered into variable nodes, and all weights of
edges in the Tanner graph are set to 1. Our data is created by transmitting the all-zero
codeword on the additive white Gaussian noise (AWGN) channel with binary phase shift
keying (BPSK) modulation.

To start the NN training, we also need to set various 0/bE N , where bE represents the
average energy per information bit and 0N represents the one-sided power spectral density.
There are two extreme cases in NN training: when 0/bE N →∞ , it means NN trains the
transmitted information without channel noise, so it can learn the code structure; when

0/ 0bE N → , it means NN only trains the channel noise, without learning the code structure.
This clearly indicates there will be some proper 0/bE N that we can choose between these two
cases. In reference [22], authors have performed some researh about how to choose the proper

0/bE N . In our proposed method, 0/bE N of 1 dB is chosen for NN training, so we can both
learn the code structure and channel noise at the same time.

Then, the inputs are multiplied by the corresponding weights and propagated through a
nonlinear activation function, which is stimulated by the process of computing syndrome

1 2 1(, ,..., {0) 1, , }M is s s s− ∈=s to check whether the decoded vector 0 1 1(, ,...,), {0,1}N iz z z z− ∈=z is
the codeword. Concisely, at the end of every iteration of the decoding, we usually compute the
syndrome mod(,2)· T=s z H , if =s 0 , we may think z is the codeword. For example, if we
have a parity check matrix H , which can be represented in (3),

1 0 0 1 0 0
0 1 1 0 1 0

,
1 0 0 0 1 1
0 0 1 0 0 1

 =

H (3)

the process of computing s can be described by

 1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6

1 0 1 0
0 1 0 0
0 1 0 1

· · .
1 0 0 0
0

(, , ,)

 1 1

(

 0
0 0 1

, , , , ,) (, , , , ,)

 1

Ts s s s z z z z z z z z z z z z=

= =

s H (4)

Then, mod(,2)=s s . From the expression above we can see 1 1 4mod(,2)s z z= + . To make it
clear, we list the possible values in Table 1,

Table 1. An illustration of possible values
1z 2z 1s

0 0 0
1 1 0
0 1 1
1 0 1

From Table 1 we can see only when 1z equals to 2z , 1s equals to 0; when 1z does not equal to

2z , 1s equals to 1. This property is very similar with XOR gate which is a digital logic gate
giving a true output when the number of true inputs is odd. Therefore, we can use an
expression to represent this property, which is depicted as follows,

3754 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

 1 1 2 1 2 2 1())1 (1s z z zz z z= ⊕ − + −= , (5)
where ⊕ is the logic symbol representing the addition modulo 2 operation.

Similarly, we can also compute 2 2 3 5mod(,2)s z z z= + + , and the possible values are shown
as follows,

Table 2. An illustration of possible values
2z 3z 5z 2s

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

From Table 2, it is easy to conclude an expression for 2s described as follows,
 2 5 3 32 3 5 2 2 2 3 3 2 5[1 (1) (1)] [(1) (1)](1)s z z z z z z z z z z z z z= ⊕ ⊕ = − − − − + − + − − . (6)
Therefore, the process of computing the syndrome s can be depicted as follows,

1 1 4mod(,2)s z z= +

1 2 2 1 1 2(1) ()1z z z zz z+ − == − ⊕

1z

4z

⊕

2z

5z

⊕
3z

2 2 3 5mod(,2)s z z z= + +
5 32 2 2 3 3 2 53 2 3 5[1 (1) (1)] [(1) (1)](1)z z z z z z z z z z z z z= − − − − + − + − − = ⊕ ⊕

1z

kz

⊕

Nz

1 1··· ··· ··· ·mod(, ··2)k N k Nj z zz z zs z= + + ⊕+ ⊕=

Fig. 1. An illustration of computing the syndrome

From the analysis above we can know the process of computing the syndrome is in binary
domain consisting of 0 and 1. Stimulated by the analysis above, we extend the XOR function
to real number field to obatin the activation function outputf (and we call this function XOR
function). More specifically, if there are only two inputs x and y , the function is defined as
follows

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3755

 (,) (1) (1).outputf x y x y x y y x= ⊕ = − + − (7)
At that time, the values of x and y range from (,)−∞ +∞ , which is decided by the transmitted
codeword, transmission energy and channel noise (signal to noise ratio). Then, we depict the

outputf as follows,

2

The plot of activation function

0

x

-12

2

-10

-8

1.5

-6

-4

1

-2

va
lu

e
of

 o
ut

pu
t

0

2

0.5

4

6

0

y

8

-0.5 -1 -1.5 -2

10

The plot of activation function

0

x

-250

10

-200

-150

-100

-50

0

5

va
lu

e
of

 o
ut

pu
t

50

100

150

200

0

y

-5
-10

Fig. 2. The plot of XOR function

From the Fig. 2 above we can easily see if [, 2, 2]x y∈ − , the range of (,)outputf x y is [12,8]− ;

if [10 1, , 0]x y∈ − , the range of (,)outputf x y is [250,200]− . Theoretically, the range of (,)outputf x y
is from −∞ to +∞ , but in practical application, it always has borders because x and y are of
low probability to be large numbers (the value is related to the codeword and signal to noise
ratio).

If there are three elements, activation function can be expressed as follows,

[] []

(, ,)
(,)

 (,)(1) 1 (,)

 (1) (1) (1)

1 (1) (1)

.

output

output

output output

f x y z x y z
x y z

x y z z x y

x y y x

f

f

z z x y y x

f

= ⊕ ⊕

⊕

 = − + −
= − + − − + − − − −

=
 (8)

Therefore, it is easy to conclude that if there are multiple inputs, the function can be written as
 (, ,) (((,),)=)output outputl x y lf f lx y x y k= ⊕⊕ ⊕ ⊕ . (9)
In our paper, we use induction method to obtain the expression of outputf . Assume the size of

the input set 1 2{ , ,..., }Nx x x is N , the function outputf can be written in terms of polynomials as

1 1 2

1 2 3

0 1

2

1
1 2

1 2

3

()
 ((,))

, ,

···

 (2) (2)

 +(

 (2)

,2)

output N N

output N

i i j

i j k

N
N

N N

N

N
N

f x x x
f x x x x

C x C x x

C x x x

C x x

x x

x−

= ⊕ ⊕

= ⊕ ⊕ ⊕

= − + −

+ − +

⊕

−

∑ ∑
∑
∑

 (10)

where i
NC means the combination of all i elements in N elements.

3756 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

We show the proof process in the Apendix.
 For example, assume the input set has four elements 1 2 3 4{ , , , }x x x x , then 1

4 iC x∑
means 1 2 3 4x x x x+ + + , 2

4 i jC x x∑ means 1 2 1 3 1 4 2 3 2 4 3 4x x x x x x x x x x x x+ + + + + ,
3
4 i j kC x x x∑ means 1 2 3 1 2 4 2 3 4 1 3 4x x x x x x x x x x x x+ + + and 4

4 1 2 3 4C x x x x∑ means 1 2 3 4x x x x , thus the
expression of outputf is

0
1 2 3 4 1 2 3 4

1
1 2 1 3 1 4 2 3 2 4 3 4

1 2 3 1 3 4 1 2 4 2 3
2

4

() (2) ()

 (2) ()

 (2) ()

, ,

,outputf x x x x x

x x x x x x x x x x x x

x x x x x x x x x x

x x

x

x

x

= − + + +

+ − + + + + +

+ − + + +

1 2 3 4
3 (2) .x x x x+ −

 (11)

Using the nonlinear activation function outputf for every check node, we can obtain the
corresponding output 0,1.., (1) 1[]j j m qo = − −=o , where jo means the output of the j -th check node.
For example, if the parity check matrix is the same as (3), we can obtain o by computing

10 4(,)outputo f x x= , 21 3 5(, ,)outpuo f x x x= , 12 5 6(, ,)outputo f x x x= and 3 3 6(,)outputo f x x= . After we have
the output o , we should also need to define a specific loss function E to find the optimal
weights. The most common loss functions are the mean squared error function (MSE) and the
binary cross-entropy function (BCE), which can be defined as

 ()2

MSE
ˆ ,1

i i
i

b b
M

E = −∑ (12)

 () ()BCE ln (1) ln ˆ11 ˆ ,i i i i
i

b bbE b
M

= − + −
 −∑ (13)

where ib is the i -th expected value and îb is the i -th estimate value, M is the sample
number. In our proposed method, we adapt the MSE function as loss function, depicted as

1 1 1

0 0 0

2 2 21 1 1() (0) () ,j j j

M M M

j j j
E e o o

M M M

− − −

= = =

= = − =∑ ∑ ∑ (14)

where the expected output is (0,0,),0… , je is the difference between the j -th expected value
and the actual value jo .

Then, we can use the XOR function and the loss function to compute the optimal weights of
the Tanner graph. From the expression of Equation (10), it is shown that function outputf is
differential and qualified to be used in a gradient descent algorithm, which is a typical method
used in NN. Therefore, we use the gradient descent algorithm to train and obtain the weights

, {0,1,..., (1) 1}, {0,1,..., (1) 1}[]j k j m q k n qw ∈ − − ∈ − −=W in the following way,

()

(1) (1) () (1)
() , ,
l

l l l l
l

Eµ+ + +∆ = −
∂

+ ∆
∂

=W W WW
W

 (15)

here, the superscript (1)l + represents the (1)l + -th iteration, µ is the learning rate, ∆W is the
variance value of W and E is the loss function. With the help of gradient descent algorithm,
we can find the optimized weights of Tanner graph which can minimize the loss function E .

Finally, when it comes to the iterations that we preset, the training process stops and we will
finally obtain the final weights of Tanner graph W .

To make our training model more understandable, an example was given as follows. The
parity check matrix H is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3757

1 1 0 1 0 0
0 1 1 0 1 0

.
1 0 0 0 1 1
0 0 1 1 0 1

 =

H (16)

Its Tanner graph is shown in Fig. 3, where there are six variable nodes 0 1 5{VN ,VN ,...,VN } and
four check nodes 0 1 2 3{CN ,CN ,CN ,CN } . In the first iteration, all weights of edges are set to 1.
Then inputs multiply the corresponding weights and propagate through the nonlinear
activation function outputf , where we obtain the output (1) (1) (1) (1)

0 1 2 3{ , , , }o o o o=o .

VN0

VN1

VN2

VN3

VN4

VN5

CN0

CN1

CN2

CN3

1,1 1w =

0,0 1w =

0,1 1w =

0,3 1w =

1,2 1w =

1,4 1w =

3,5 1w =

2,5 1w =

2,4 1w =
3,3 1w =

3,2 1w =

0x

1x

2x

3x

4x

5x

0 0 0 1 3(1 ,1 ,1)outputo f x x x= ⋅ ⋅ ⋅

11 421(1 ,1 ,1)outputo f x x x= ⋅ ⋅ ⋅

12 0 4 5(1 ,1 ,1)outputo f x x x= ⋅ ⋅ ⋅

13 2 3 5(1 ,1 ,1)outputo f x x x= ⋅ ⋅ ⋅

(1)
0 00e o= −

1
(1)
1 0e o= −

2
(1)
2 0e o= −

3
()
3 0le o= −

(1) (1) 2 (1) 2 (1) 2
3 3 3

0 0 0

1 1 1() (0) () ,
4 4 4j j j

j j j
E e o o

= = =

= = − =∑ ∑ ∑

Fig. 3. An example to illustrate training model: the first iteration

Then we can obtain the MSE by computing

 (1) (1) 2 (1) 2 (1) 2
3 3 3

0 0 0

1 1 1() (0) () .
4 4 4j j j

j j j
E e o o

= = =

= = − =∑ ∑ ∑ (17)

According to Equation (15), after we obtain MSE, we can get (2)∆W and make corrections to
the weights (2) (1) (2)= + ∆WW W . For the l -th iteration, we can see from Fig. 4.

In the l -th iteration, the inputs multiply the corresponding weights and propagate through
the nonlinear activation function. Specifically, for the first check node, its output is

() () () ()
0 0 0,0 0 0,1 1 0,3 3(, ,)l l l l

outputo f w x w x w x= ⋅ ⋅ ⋅ . Based on ()(() () ()
0 1 2 3

) { , , , }l l ll lo o o o=o , we can obtain the MSE
()lE and (1)l+∆W according to Equations (14) and (15). Then we can make corrections to

(1)l+W and start the next iteration. When it comes to the iteration number that we preset, the

3758 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

training stops and we obtain the weights W .

VN0

VN1

VN2

VN3

VN4

VN5

CN0

CN1

CN2

CN3

() (1) ()
0,0 0,0 0,0
l l lw w w−= + ∆

() (1) ()
0,1 0,1 0,1
l l lw w w−= + ∆

() (1) ()
1,2 1,2 1,2

l l lw w w−= + ∆

() (1) ()
3,5 3,5 3,5
l l lw w w−= + ∆

0x

1x

2x

3x

4x

5x

() () () ()
0 0 0,0 0 0,1 1 0,3 3(, ,)l l l l

outputo f w x w x w x= ⋅ ⋅ ⋅

1
() () () ()
1 1 1,1 1,2 , 42 1 4(, ,)l l l l

outputo f w x w x w x= ⋅ ⋅ ⋅

0
() () () ()
2 2 2,0 2,4 , 524 5(, ,)l l l l

outputo f w x w x w x= ⋅ ⋅ ⋅

2
() () () ()
3 3 3,2 3,3 , 533 5(, ,)l l l l

outputo f w x w x w x= ⋅ ⋅ ⋅

0 00e o= −

1 10e o= −

2 20e o= −

3 30e o= −

() () 2 () 2

()

3 3

0

2

0

3

0

1 1() (0)
4 4

1 () ,
4

j

l l l
j j

l
j

j

j

E e o

o

= =

=

= = −

=

∑ ∑

∑

()
(1)

() ,
l

l
l

Eµ+ ∂
∂

∆ = −
W

W

(1) () (1) ,l l l+ += + ∆WW W

() (1) ()l l l−= + ∆WW W

Fig. 4. An example to illustrate the training model: the l -th iteration

In conclusion, it is worth mentioning that our activation function is simulated by computing

the syndrome for every check node. Its aim is to utilize the output of the XOR function to alter
the weights of the Tanner graph, which indirectly alters the value of the inputs by multiplying
them in the process of decoding. In this way, it will reduce the influence by the channel noise
and therefore, have a positive effect on the convergence rate and also the decoding
performance. Concisely, if all inputs can be correctly decoded by decoding scheme,
multiplying weights with inputs can make the decoding convergence faster to the codeword; if
there are some abrupt errors occurring, multiplying weights with inputs can reduce the effects
of errors. Consequently, the decoding performance will be improved.

3.2 Modification to the CPM-RID Decoding Algorithm
Now, we obtain the weights of the Tanner graph and assign them to the submatrix that we
constructed. The construction method of the submatrix is the same as that in literature [14],
where matrix *

0H consists of all first rows 0,0 1,0 1,0, ,..., m−h h h of m row blocks 0 1 m-1H ,H , ...,H .
In a similar manner, *

1H is constructed of all second rows 0,1 1,1 1,1, ,..., m−h h h and *
iH is

constructed by all 1i + rows 0, 1, 1,, ,...,i i m i−h h h . Therefore, we obtain 1q − matrix * * *
0 1 2q−H ,H , ...,H

and treat every matrix *
iH as a block-layer.

During the process of decoding one submatrix *
iH , we choose a parallel mechanism to

update the reliability information for check nodes and variable nodes, such as scaled MSA in
our method. According to the conventional iterative decoding algorithm, the messages
transmit along their corresponding edges to update the information, while in our proposed
method, when messages transmit along their corresponding edges, they multiply the
corresponding weights to update the information. For the decoding between various
submatrices we adapt the serial mechanism, that is, we take the reliability vector for variable

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3759

nodes as the input vector for the next submatrix *
1i+H and carry on another decoding. Finally,

after every m iterations, we compute the syndrome and check whether it successfully
decodes.

3.3 Summary
We use 0 1 (1) 1(, ,...,)n qy y y − −=y to represent the soft-decision received vector at the output of the
receiver detector. Let , 0 (1),0 (1)[] t m qt j j n qh ≤ < − ≤ < −=H denote the whole parity check matrix,

,() { : 0 (1), 1}t jN j t t m q h= ≤ < − = denote all check nodes which are connected to the j -th
variable node, and ,() { : 0 (1), 1}t jM t j j n q h= ≤ < − = denote all variable nodes which are
connected to the t -th check node. Let () () () ()

0 1 (1) 1(, , ...,)i i i i
n qQ Q Q − −=Q denote the updated reliability

information vector at the end of the i -th iteration for variable nodes, and
() () () ()

0 1 (1) 1(, , ...,)i i i i
m qR R R − −=R denote the updated reliability information vector at the end of the

i -th iteration for check nodes. In scaled MSA-based reliability information updating
algorithms, there is always an attenuation factor to reduce the error due to the approximation
of the formula [15]. In our proposed algorithm, we use λ to represent the attenuation factor,
which will be shown in Equation (20).

With the above notations, our proposed method is clearly explained below.

Proposed Method
Step 1: Train the weights of the training model using gradient descent algorithm and alter the
weights using

()

(1) (1) () (1)
() , .
l

l l l l
l

Eµ+ + +∆ = −
∂

+ ∆
∂

=W W WW
W

 (18)

Step 2: When it comes to the training number we preset, the training process stops and saves
the weights , {0,1,..., (1) 1}, {0,1,..., (1) 1}[]j k j m q k n qw ∈ − − ∈ − −=W . Check the weights and judge whether
overfitting occurs. If it happens, go to Step 1 and adjust parameters µ to restart the training. If
not, go to Step 3.
Step 3: Divide parity check matrix H into 1q − submatrices * * *

0 1 2q−H ,H , ...,H .
Step 4: Set (0)

j jQ y= for all 0 (1)j n q≤ < − and (0) 0tR = for all 0 (1)t m q≤ < − . Allocate the
weights , {0,1,..., (1) 1}, {0,1,..., (1) 1}[]j k j m q k n qw ∈ − − ∈ − −=W to the edges in the Tanner graph.
Step 5: Carry out the i -th iteration based on *

iH :
(1) If mod 0i m ≠ , compute the reliability vector ()iQ and ()iR :
 ()mod , ' mod , '\\

() (1) (1)

()()
sign() min ,t i m j i m

i i i
j jj M tj M t

jjj
w w QR Q − −

′ ′′∈′∈

 = ∏ ⋅ ⋅
× (19)

 () (1) ()
() ,i i i

j j t N j tQ Q R λ−
∈= + ×∑ (20)

Otherwise mod 0i m = , then go to Step 6;
(2) Take reliability vector of i -th iteration as (1)i + -th input vector, and go to Step 5-(1).

Step 6: Compute the syndrome · T=s z H . If ≠s 0 , 1i i← + , then go to Step 5; otherwise =s 0 ,
stop the process and output the codeword. Use the reliability vector to compute the hard
decision vector z .

It is worth mentioning that the parameters chosen for learning rate µ and training number
are skillful in NN training. To choose proper values, we tend to perform many various

3760 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

experiments to choose the optimal parameters or some algorithms like greedy sequential
methods. Such a kind of question is named hyperparameter optimization, which is well studied
in [23]. In our paper, we do not take the optimization method into consideration because we
mainly focus on the efficiency of our proposed method. Therefore, after many various
experiments and comparing their results, we finally set learning rate 0.001 and training
number 10000.

As for the parameter λ for computing the ()i
jQ (see in (20)) in our method, we also perform

some experiments to find a proper value of λ . For example, we perform various experiments
using scaled MSA algorithm with various values of λ on (720,360) CPM-QC-LDPC code
which is constructed using the method described in [14]. The decoding iteration is 50 and the
experimental results are shown as follows,

0 1 2 3 4 5 6 7

Eb/N0(dB)

10
-4

10
-3

10
-2

10
-1

BE
R

Decoding performances with various attenuation factors

BPSK

attenuation factor = 1

attenuation factor = 0.9

attenuation factor = 0.8

attenuation factor = 0.7

attenuation factor = 0.6

Fig. 5. The decoding performance with various attenuation factors

From the Fig. 5 above, we can see different values of λ have different impacts on the

decoding performance. When λ equals to approximate 0.8, the decoding performance is the
best. Using the same method, we can finally choose the proper attenuation factor. In our paper,
we choose 0.8λ = .

4. Experiments and Complexity Analysis

4.1 Experiments
In this section, we will present the MATLAB simulation results of our proposed method for
CPM-QC-LDPC code with various lengths, and compare the bit error rate (BER) and frame
error rate (FER) performance with that of scaled MSA and CPM-RID decoding algorithms.

Because our proposed method is performed on CPM-QC-LDPC code, we should first
construct some efficient codes. The detailed method is described in Reference [14]. Briefly,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3761

we first choose the finite field GF(97) and construct two arbitrary subsets 1 2 3 4
1 { , , , }S α α α α=

and 5 6 12
2 { , ,..., }S α α α= . Then, we construct a base matrix B by

1 5 1 6 1 1

2 5 6 2

3 5 6

4 5 6

2

2 12

3 3 12

4 4 12

α α α α α α

α α α α α α

α α α α α α

α α α α α α

 + + +

+ + + = + + +
 + + +

B

. (21)

We can see B is a 4 8× matrix. Then we replace all entries in B with CPMs with the size of
96 96× , and we can get a parity check matrix H with the size of 384 768× . The null space of
H represents a (768,384) CPM-QC-LDPC code C with the rate of 1/2.

Then, we perform three decoding algorithms on (768,384) CPM-QC-LDPC code C , three
algorithms are performed 5 iterations and 10 iterations, respectively. For CPM-RID decoding
scheme, we first construct a submatrix *

0H with the size of 4 768× to decode. For our proposed
method, we first use NN to train the weights of Tanner graph and then start to decode. The
experimental results are shown in Fig. 6.

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7

Eb/N0(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

BE
R

Decoding performance comparison for (768,384) CPM-QC-LDPC

BPSK

MSA with 5 iterations

CPM-RID with 5 iterations

proposed method with 5 iterations

MSA with 10 iterations

CPM-RID with 10 iterations

proposed method with 10 iterations

Shannon Limit

Fig. 6. Decoding performance comparison for (768,384) CPM-QC-LDPC code

From Fig. 6, it is easy to see our proposed method has a better and faster convergence rate

than that of other two algorithms. Concisely, compared with MSA scheme decoded with 5
iterations, CPM-RID scheme with 5 iterations has a faster decoding performance (there is an
approximate 0.2 dB coding gain), while our proposed method has a better performance (when
BER is 310− , there is a 0.4 dB coding gain compared with that of MSA scheme and a 0.2 dB
coding gain compared with that of CPM-RID scheme). When iteration equals to 10, there is
also a visible coding gain using our proposed method.

Then, we compare the bit error rate performance and frame error rate performance of three
algorithms, and finally show the results in Fig. 7 and Fig. 8. In this experiment, we perform
MSA scheme with 50 iterations, perform CPM-RID scheme with 35 iterations and proposed

3762 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

method with 30 iterations.
After many experiments, we find when we choose 50 iterations for MSA scheme, 35

iterations for CPM-RID scheme and 30 iterations for our proposed method, they all achieve
their best decoding performance. From Fig. 7 and Fig. 8, we can see our proposed method
decoded with 30 times perform slightly better than that of MSA with 50 iterations and
CPM-RID scheme with 35 iterations.

0 1 2 3 4 5 6 7

Eb/N0(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

BE
R

BER performance comparison

MSA with 50 iterations

CPM-RID with 35 iterations

proposed method with 30 iterations

BPSK

Shannon Limit

Fig. 7. BER performance comparison for (768,384)

CPM-QC-LDPC code

1 1.5 2 2.5 3 3.5 4 4.5 5

Eb/N0(dB)

10
-4

10
-3

10
-2

10
-1

10
0

FE
R

FER performance comparison

MSA decoded with 50 iterations

CPM-RID decoded with 35 iterations

proposed method with 30 iterations

Fig. 8. FER performance comparison for (768,384)

CPM-QC-LDPC code

To illustrate the efficiency of the improvement on convergence rate, we also perform

another experiment to compare the iterations that we need to achieve the best performance.
We choose 0/ 2bE N = dB and 0/ 2.4bE N = dB in this experiment, and depict the results in
Fig. 9. Concisely, when 0/ 2bE N = dB, MSA scheme requires 20 iterations to achieve a stable
decoding performance. CPM-RID scheme needs 15 iterations while our proposed method only
needs 12 iterations. When 0/ 2.4bE N = dB, it requires 12 iterations for MSA and 10 iterations
for CPM-RID to achieve a stable performance. However, our proposed method only needs 7
iterations.

4.2 Complexity Analysis
In this part we mainly analyze the implementation complexity, which is crucial to LDPC
decoder. We assume we construct the code based on the finite field GF(q). Then, we construct
a m n× base matrix B . After replacing all entries in B with CPMs with the size of

(1)(1)q q× −− , we obtain a parity check matrix (1) (1)m q n q− × −H , whose null space represents a
((1), ()(1))n q n m q− − − CPM-QC-LDPC code C with the rate of 1 /m n− . The row weight of

(1) (1)m q n q− × −H is n and the column weight is m . For CPM-RID and our proposed method, we
construct the submatrix *

0H with the size of (1)m n q× − .
We first analyze the decoder complexity for three algorithms. We assume each real number

information is quantized by b bits. For MSA scheme, it requires (1)n q b− binary memory
units to store { }jy=y and (1)n q b− binary memory units to store the reliability information

{ }jQ=Q . Because the information update Equation (19) in MSA should be
 { }() (1) (

(\
1)

) s[ign() [mi .] n | |]i i i
j M t j j jt Q QR − −
′ ′ ′∈ ×= ∏ (22)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3763

5 7 8 10 12 15 20 25 30 35 40

Iterations

0

0.005

0.01

0.015

0.02

0.025

0.03
BE

R

Convergence rate comparison

Eb/N0 = 2, MSA

Eb/N0 = 2, CPM-RID

Eb/N0 = 2, proposed method

Eb/N0 = 2.4, MSA

Eb/N0 = 2.4, CPM-RID

Eb/N0 = 2.4, proposed method

Fig. 9. Convergence rate comparison with various algorithms

(the meanings of symbols in Equation (22) are the same as those in section 3.3), it requires
2(1)b − binary memory units to store the two smallest magnitudes of the information of
adjacent variable nodes for each check node, 2log n binary memory units to store the
location of the smallest magnitude of the information of adjacent variable nodes, and n units
for signs of the information of adjacent variable nodes. Because there are (1)m q − check nodes,
we totally need 2(1) 2(1) logm q b n n− − + + + 2 (1)n q b− binary memory units for MSA
decoder.

Similarly, we can use the same method to analyze the decoder complexity for CPM-RID
scheme and our proposed method. For CPM-RID scheme, we decode based on *

0H , which is a
(1)m n q× − submatrix of H . Therefore, we only require 22(1) log 2 (1)m b n n n q b − + + + −

binary memory units for CPM-RID scheme. Because there are only mn non-zero elements in
*
0H (it means mn edges in the Tanner graph of *

0H), so we need extra mnb binary memory
units to store the weighs. The total resources required for our proposed method is

22(1) log 2 (1)m b n n n q b mnb − + + + − + . To make it clear, we present the information in
Table 3 as follows.

Then, we consider the computational complexity comparison among three algorithms. It is
worth mentioning that we do not take the training complexity into consideration in our
proposed method. That is simply because after we train the weights, we only need to save them
and use them to help decode. It is also worth mentioning that in those three decoding
algorithms, the process which brings out main complexity is the information update process to
update the Q . Therefore, we only consider and compare the complexity brought out by the
information update process of three algorithms. To make it clear, we list three information
update processes in Table 4 (the meanings of symbols are the same as those in Section 3.3).

3764 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

Table 3. A comparison of decoder complexity

Decoding Scheme Decoder complexity
MSA 2(1) 2(1) log 2 (1)m q b n n n q b− − + + + −

CPM-RID 22(1) log 2 (1)m b n n n q b − + + + −

Proposed method 22(1) log 2 (1)m b n n n q b mnb − + + + − +

Table 4. An illustration of three information update processes

Decoding Scheme Information update process

MSA ()() (1) (1)

()() \\
sign() mini i i

j jj M t jj M t j
tR Q Q− −

′ ′′∈′∈

 = ∏
×

 (23)

CPM-RID ()() (1) (1)

()() \\
sign() mini i i

j jj M t jj M t j
tR Q Q− −

′ ′′∈′∈

 = ∏
×

 (24)

Proposed method ()() (1)
mod , ' mod , '\

(1)

)\ ()(
sign() mint i m

i i i
j jj M t jj M t

i
j

j m jw QR w Q− −
′ ′′∈′∈

 = ∏ ⋅ ⋅
×

 (25)

From Equation (23) and (24), we can see in each iteration for MSA and CPM-RID, we need

to carry out 23 log () 2n n+ − real number computations (2 1n − computations for sign
operation and 2log 1n n+ − computations for comparion operation), while in (25), we need
to carry out extra n multiplication operations. However, for various decoding schemes, they
have different convergence rates, so it is fair to consider the iterations required for those
schemes. Assume MSA scheme requires 1iter iterations to achieve a stable decoding
performance, CPM-RID requires 2iter iterations and our proposed method requires 3iter , we
present the computational complexity for information update in Table 5,

Table 5. An illustration of computational complexity

Decoding Scheme Computational complexity comparison for information update
MSA 1 23 log () 2 additionsiter n n + − ×

CPM-RID 2 23 log () 2 additionsiter n n + − ×

Proposed method 3 2 33 log 2 additions multiplications()n iter niter n× + − + ×

In each iteration, we can see our proposed method has a higher computational complexity
than that of other two schemes. However, if we take the convergence rate into consideration,
that is, our proposed method has fewer iterations to achieve a stable decoding performance, it
is possible for our proposed method to have a similar computational complexity with that of
other two schemes.

5. Conclusion
A combination of neural network training and CPM-RID decoding algorithm is presented in
this paper.

At first, we constructed an activation function for check nodes and established a neural
network model to train weights and assign them to the edges in a Tanner graph. Next, we
modified the original CPM-RID algorithm by directly dividing the parity check matrix into

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3765

some submatrices. In the process of decoding a submatrix we chose parallel mechanism, while
between various submatrices we chose serial mechanism. Finally, the trained weights and
modified CPM-RID algorithm are combined. The whole decoding process can be treated as
decoding block-by-block with weights. Our simulation experiments include the comparisons
among three algorithms, that is, scaled MSA algorithm, CPM-RID algorithm and our
proposed method. We find that our proposed algorithm has the lowest BER and FER and the
fastest convergence rate, which verifies the merits of our proposed method.

Appendix
Proof of equation (10).
In this paper, we use the induction method from Mathematics to verify the expression of outputf .
Let n denotes the number of the input elements.

If there are only two inputs 1 2{ , }x x , that is, 2n = , then we have
1 2 1 2

1 2 1 2

1 2 1 2

0 1 1 2

(,)
 (1) (1)
 2

 (2) (2) .

output

in i n j

f x x x x
x x x x
x x x x

x x xC C

= ⊕

= − + −
= + −

= − + −∑ ∑

In the case of n N= , we assume the expression of 1 2,(), ,output Nxx xf is

1 2 1 2 3

1 2

0 1 1 2

1
1 2

(,) ((,))

 (2) (2)

 .

, ,

(2)

output N output N

N

n i n i j

N N
n N

x x
x

C C

f x f x x x x
x x

x x x

C x x x−

= ⊕ ⊕

= ⊕ ⊕

= − + −

…

+ −+

⊕

∑ ∑
∑

Now assume that ' 1n N= + (here, we use 'n to distinguish with n N=), we get

1 2 1 1 2 3

1 2 1

1 2 1

(, ,) (())

 (,)

, ,

, ,

output N N output N

N N

output N N

x x
x

f x x f x x x x
x x x

xf x x x

+

+

+

= ⊕ ⊕ ⊕

= ⊕

…

⊕ ⊕
⊕

⊕
= …

1 2 1 1 2 1

1 2 1 1 2 1

 [1 (,)] (,) (1)

, , , ,
, , , ,[(,)] 2 (,) .

output N N output N N

output N N output N N

f x x x x x x
x

f x x
f x x f x xx x x

+ +

+ +

= − ⋅ + ⋅ −

= …+ − ⋅ ⋅

… …

…

Then we substitute the expression of 1 2,(), ,output Nxx xf and obtain
1 2 1

1 1 1 2 1 1

1 0 1 1 2 1
1 2 1

n() () (2)

 (2)

, , , (

2)

(2) (2) (2)

N N
output N N N N i j N

N N
n i n i j

n

n N N

x x x x x Cf x x x x C x

C x C

x

x C x x x xx

−
+ +

−
+

+ + + + + + −

− + − + +

 = + −
 + − − ⋅

∑ ∑

∑ ∑ ∑

0 1 1 2 1
' ' ' 1 2

1
' 1 2 1

(2 (2) (2)

 (

)

2) .

N N
n i n i j n N

N N
n N

C C C x x xx x

C x x x

x −

+
+

+ −= − + − +

+ −

∑ ∑ ∑
∑

Therefore, we have the expression of (3) by induction.

3766 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

References
[1] R.G. Gallager, “Low density parity-check codes,” IEEE Trans. Inf. Theory, vol. 8, no. 1, pp. 21-28,

January, 1962. Article (CrossRef Link).
[2] S. Lin, “Capacity-approaching low-density parity-check codes: recent developments and

applications,” in Proc. of 2013 Workshop on Coding and Information Theory, January 19-20, 2013.
Article (CrossRef Link).

[3] I. Tsatsaragkos and V. Paliouras, “A reconfigurable LDPC decoder optimized for 802.11n/ac
applications,” IEEE Transactions on Very Large Scale Integration Systems, vol. PP, no. 99, pp.
1-14, September, 2017. Article (CrossRef Link).

[4] I.E. Bocharova, B.D. Kudryashov, V. Skachek and Y. Yakimenka, “Average spectra for ensembles
of LDPC codes and applications,” in Proc. of IEEE International Symposium on Information
Theory, pp. 361-365, June 25-30, 2017. Article (CrossRef Link).

[5] Keol Cho and Ki-Seok Chung, “Self-adaptive termination check of min-sum algorithm for LDPC
decoders using the first two minima,” KSII Transactions on Internet and Information Systems, vol.
11, no. 4, pp. 1987-2001, April, 2017. Article (CrossRef Link).

[6] J. Xu and K. Zhang, “A low-complexity CLSIC-LMMSE-based multi-user detection algorithm for
coded MIMO systems with high order modulation,” KSII Transactions on Internet and
Information Systems, vol. 11, no. 4, pp. 1954-1971, April, 2017. Article (CrossRef Link).

[7] Z.X. Liu, G.X. Kang, Z.W. Si and N.B. Zhang, “Performance improvement of iterative
demodulation and decoding for spatially coupling data transmission by joint sparse graph,” KSII
Transactions on Internet and Information Systems, vol. 10, no. 12, pp. 5964-5984, December,
2016. Article (CrossRef Link).

[8] Y.Y. Tai, L. Lan, L. Zeng, S. Lin and K.A.S. Abdel-Ghaffar, “Algebraic construction of
quasi-cyclic ldpc codes for the awgn and erasure channels,” IEEE Trans. Commun., vol. 54, pp.
1765-1774, October, 2006. Article (CrossRef Link).

[9] J. Kang, Q. Huang, L. Zhang, B. Zhou and S. Lin, “Quasi-cyclic ldpc codes: an algebraic
construction,” IEEE Trans. Commun., vol. 58, pp. 1383-1396, May, 2010.
Article (CrossRef Link).

[10] J. Li, K. Liu, S. Lin and K.A.S. Abdel-Ghaffar, “Quasi-cyclic LDPC codes on two arbitrary sets of
a finite field,” in Proc. of IEEE International Symposium on Information Theory, pp. 2454-2458,
June 29- July 4, 2014. Article (CrossRef Link).

[11] K. Liu, S. Lin and K.A.S. Abdel-Ghaffar, “A revolving iterative algorithm for decoding algebraic
quasi-cyclic LDPC code,” IEEE Trans. Commun., vol. 61, pp. 4816-4827, October, 2013.
Article (CrossRef Link).

[12] D. Wang, L. Wang, X. Chen, A. Fei, C. Ju and Z. Wang, “Construction of QC-LDPC codes based
on pre-masking and local optimal searching,” IEEE Communication Letters, vol. PP, pp. 1-1,
September, 2017. Article (CrossRef Link).

[13] L. Kong, L. He, P. Chen, G. Han and F. Yang, “Protograph based quasi-cyclic LDPC coding for
ultra-high density magnetic recording channels,” in Proc. of 2015 IEEE International Magnetics
Conference, May 11-15, 2015. Article (CrossRef Link).

[14] J. Li, K. Liu, S. Lin and K.A.S. Abdel-Ghaffar, “Algebraic quasi-cyclic ldpc codes: construction,
low error-floor, large girth and a reduced-complexity decoding scheme,” IEEE Trans. Commun.,
vol.62, pp. 2626-2637, July, 2014. Article (CrossRef Link).

[15] S. Lin, K. Liu, J. Li and K.A.S. Abdel-Ghaffar, “A reduced-complexity iterative scheme for
decoding quasi-cyclic low-density parity-check codes,” in Proc. of 48th Annual Asilomar
Conference on Signals, Systems and Computers, pp. 119-125, November 2-5, 2014.
Article (CrossRef Link).

http://ieeexplore.ieee.org/document/1057683/
http://hkumath.hku.hk/%7Eghan/WCI/Shu-1.pdf
http://ieeexplore.ieee.org/document/8052499/
https://doi.org/10.1109/ISIT.2017.8006550
http://www.itiis.org/digital-library/manuscript/1666
http://www.itiis.org/digital-library/manuscript/1664
http://www.itiis.org/digital-library/manuscript/1548
http://ieeexplore.ieee.org/document/1710332/
https://doi.org/10.1109/TCOMM.2010.05.090211
https://doi.org/10.1109/ISIT.2014.6875275
https://doi.org/10.1109/TCOMM.2013.091213.120791
http://ieeexplore.ieee.org/document/8049482/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7128764
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7128764
https://doi.org/10.1109/INTMAG.2015.7157697
https://doi.org/10.1109/TCOMM.2014.2339329
https://doi.org/10.1109/ACSSC.2014.7094410

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3767

[16] J. Li, K. Liu, S. Lin and K.A.S. Abdel-Ghaffar, “Decoding of quasi-cyclic LDPC codes with
section-wise cyclic structure,” in Proc. of Information Theory and Applications Workshop, pp.
1-10, February 9-14, 2014. Article (CrossRef Link).

[17] W.R. Caid and R.W. Means, “Neural network error correcting decoders for block and
convolutional codes,” in Proc. of IEEE Global Telecommunications Conference, pp. 1028–1031,
December 2-5, 1990. Article (CrossRef Link).

[18] A. Hamalainen and J. Henriksson, “A recurrent neural decoder for convolutional codes,” in Proc.
of IEEE International Conference on Communications, pp. 1305–1309, June 6-10, 1999.
Article (CrossRef Link).

[19] E. Nachmani, Y. Beery and D. Burshtein, “Learning to decode linear codes using deep learning,”
Available online: https://arxiv.org/pdf/1607.04793. Article (CrossRef Link).

[20] E. Nachmani, E. Marciano, D. Burshtein and Y. Beery, “RNN decoding of linear block codes,”
Available online: http://arxiv.org/pdf/1702.07560. Article (CrossRef Link).

[21] A.R. Karami, M.A. Attar and H. Tavakoli, “Multi-layer perceptron neural networks decoder for
LDPC codes,” in International Conference on Wireless Communications, Networking and Mobile
Computing, pp. 476-479, September 24-26, 2009. Article (CrossRef Link).

[22] T. Gruber, S. Cammerer, J. Hoydis and S.T. Brink, “On deep learning-based channel decoding,” in
Proc. of 51st Annual Conference on Information Sciences and Systems, pp. 1-6, March 22-24,
2017. Article (CrossRef Link).

[23] J. Bergstra, R. Bardenet, Y. Bengio and B. Kégl, “Algorithms for hyper-parameter optimization,”
in Proc. of 25th Annual Conference on Neural Information Processing Systems, pp. 2546-2554,
December 17-25, 2011. Article (CrossRef Link).

https://doi.org/10.1109/ITA.2014.6804221
https://doi.org/10.1109/GLOCOM.1990.116658
https://doi.org/10.1109/ICC.1999.765550
https://arxiv.org/abs/1607.04793
https://arxiv.org/abs/1702.07560
https://doi.org/10.1109/WICOM.2009.5303382
https://doi.org/10.1109/CISS.2017.7926071
http://hal.ird.fr/UMR8623/hal-00642998

3768 Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC
Code Using Neural Network

Zuohong Xu received the B.S. in College of Science from National University of
Defense and Technology (NUDT), Changsha, P. R. China, in June 2016. Now, he is a
master of College of Electronic Science and Engineering from NUDT. During Oct.
2015 to Jul. 2016, he studied mathematics in the University of Warwick, UK. His
current research field includes coding theory, information theory and wireless
communication techniques.

Jiang Zhu is a professor at College of Electronic Science and Engineering, National
University of Defense Technology, Changsha, P. R. China. He received his Ph.D.
degree in Information and Communication Engineering from National University of
Defense Technology, Changsha, P. R. China, in 2000. His current research interests
include high-speed data transmission, physical layer security and satellite
communications.

Zixuan Zhang received the B.E. in College of Electric Science and Engineering
from National University of Defense and Technology (NUDT), Changsha, P. R. China,
in June 2016. Now, he is a master of College of Computer from NUDT. His current
research field includes wireless communication theory and communication network.

Qian Cheng received the B.E. and M.E. degrees in Information and Communication
Engineering from Xidian University, Xi’an, P. R. China, in June 2014, and National
University of Defense Technology (NUDT), Changsha, P. R. China, in December
2016, respectively. He is currently pursuing a doctoral degree at NUDT. His current
research interests include physical layer security and directional modulation.

