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Abstract 
 

As one of the most potential types of low-density parity-check (LDPC) codes, 
CPM-QC-LDPC code has considerable advantages but there still exist some limitations in 
practical application, for example, the existing decoding algorithm has a low convergence rate 
and a high decoding complexity. According to the structural property of this code, we propose 
a new method based on a CPM-RID decoding algorithm that decodes block-by-block with 
weights, which are obtained by neural network training. From the simulation results, we can 
conclude that our proposed method not only improves the bit error rate and frame error rate 
performance but also increases the convergence rate, when compared with the original 
CPM-RID decoding algorithm and scaled MSA algorithm. 
 
 
Keywords: CPM-QC-LDPC code; CPM-RID decoding algorithm; neural network; weights; 
bit error rate; frame error rate; convergence rate 

 
 
http://doi.org/10.3837/tiis.2018.08.011                                                                                                                 ISSN : 1976-7277 

mailto:zuohong.xu@outlook.com
mailto:jangzhu@nudt.edu.cn


3750                                                                Zuohong Xu et al.: A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC 
Code Using Neural Network 

1. Introduction 

Among many various types of channel codes, low-density parity-check (LDPC) code [1] is 
currently one of the most promising one. It has been adopted in many applications as the 
standard code for better performance, for example, the IEEE 802.11n, IEEE 802.16e, IEEE 
802.20 standards and satellite, wireless and optical communication systems, hard disk drives 
and flash memories [2–7]. Therefore, designing the most efficient type of LDPC code is an 
essential issue. 

According to much of the existing literature [8–13], quasi-cyclic (QC) LDPC code is 
considered the most preferred type for designing LDPC code. QC-LDPC code is given by the 
null space of an array ( H ) of sparse circulant matrices of the same size over a finite field 
(binary or non-binary) [2]. In some constructions of QC-LDPC code, the sparse circulant 
matrices in H  are all circulant permutation matrices (CPMs). Such types of LDPC code are 
abbreviated as CPM-QC-LDPC code. 

In general, CPM-QC-LDPC code has many advantages over any other existing types of 
LDPC code, especially in terms of encoding and decoding complexity of hardware 
implementation. In the process of decoding, the CPM-structure of H  allows some novel 
techniques to reduce the size of hardware resources and the complexity of hardware 
implementation. However, there are some restrictions for the existing decoding algorithm of 
CPM-QC-LDPC code, such as low convergence rate, relatively high bit error rate (BER) and 
high decoding complexity, which have aroused our great interest in improving these aspects. 

The classical iterative decoding algorithm of LDPC code is sum-product algorithm (SPA), 
which can be represented based on a Tanner graph. To reduce its high hardware 
implementation complexity, many approximations to SPA algorithm have been proposed. One 
well-known method is the scaled min-sum algorithm (scaled MSA), but the hardware 
implementation complexity is still too high. In reference [11], authors presented a decoding 
scheme called revolving iterative decoding (RID) for CPM-QC-LDPC code, which can 
efficiently reduce the hardware implementation complexity. However, it needs to perform 
specific column and row permutations to transform the parity check matrix, which changes the 
structure of CPMs. Another efficient algorithm is proposed in [14–16], in which authors take 
the advantages of the structural properties of CPM, and improve the revolving iterative 
decoding (CPM-RID) algorithm, which can also reduce the decoding complexity in an 
efficient way. As far as we know, it is rather rare to find the applications of a neural network 
(NN) in decoding CPM-QC-LDPC code. Thus, we are the first to propose combining the 
CPM-RID decoding algorithm with a NN to decode the CPM-QC-LDPC code. 

The traditional approach of a NN [17,18] is to train the neural network with a large dataset 
containing all codewords, and the output is expected to get the correct codeword from the 
noisy channel. Unfortunately, the number of codewords tends to be massive. For example, for 
a linear block code of length 100 with rate 0.5, there are 502 different codewords; therefore, it is 
impossible to fully train a NN in practical implementation. To overcome this issue, recent 
literature [19,20] established a NN based on a Tanner graph and an iterative decoding 
algorithm, and uses an all-zero codeword to train and assign weights to the edges of the Tanner 
graph for linear codes. The simulation results prove its reasonability but the training procedure 
is too complicated and of high complexity. Furthermore, literature [21] has constructed a new 
multi-layer model to iteratively decode LDPC code, but this only applies to short code. 
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In this paper, we use NN to train the weights in a Tanner graph, make some modifications to 
the original CPM-RID algorithm and combine them together as our proposed method. Firstly, 
we construct a simple activation function stimulated by [21] for NN to train and assign weights 
to the edges of the Tanner graph. The training procedure of our model is much simpler than 
that in Reference [19,20] and it does not need a large training dataset. Then, we modify the 
original CPM-RID algorithm by directly dividing the parity check matrix into several 
submatrices, which can reduce the decoding delay and increase the convergence rate by 
adapting a certain decoding scheme, like serial mechanism. 

The rest of the paper is arranged as follows. Section 2 gives an overview of the general 
procedure of constructing the CPM-QC-LDPC code and the original CPM-RID decoding 
algorithm. Our proposed decoding algorithm is introduced and explained in Section 3. Then, 
Section 4 conducts some necessary experiments to verify its improved decoding performance 
and faster convergence rate than that of the original CPM-RID algorithm and scaled MSA 
algorithm. Then we also give some analysis about the decoder complexity and computational 
complexity. In the final section, we make a conclusion about our proposed algorithm. 

2. Review on CPM-QC-LDPC Code and CPM-RID Decoding Algorithm  

2.1 A General Construction of CPM-QC-LDPC Code 
In this subsection, we overview the general method of how to construct the CPM-QC-LDPC 
code [11,13,14]. 

Let GF(q) be a Galois field and α  be a primitive element. All the elements of GF(q) can be 
represented by using the powers of α : 0 1 2{ 0, 1, ,..., }qα α α α−∞ −= = . We construct two arbitrary  
sets 0 1 1

1 { , ,..., }mi iiS α α α −=  and 0 11
2 { , ,..., }nj jjS α α α −=  with no intersection and make sure all the 

elements are contained in these two sets. Next, we use 1S  and 2S  to form a base matrix 

0 ,0[ ]k li j
k m l nα α ≤ < ≤ <= +B . Notice that the base matrix B  has good structural properties in making 

the H  matrix of LDPC, which has no length-4 cycle. By using the elements (0 1)j j qα ≤ < −  
of B , we can produce a vector ,1(0 , 0,0, ),… …  with length of ( 1)q − , where its -thj entry 
equals to 1. After cyclically shifting all the entries right by one place each time, we obtain a 
new vector for each shift. Thereby, we will have ( 1)q −  vectors which form a ( 1)( 1)q q× −−  
circulant permutation matrix A  (CPM), denoted by ( )jαA . Noticeably, the -thj entry of the 
top row is 1, and all rows and columns are cyclical shifts of the previous row and column, 
respectively. 

If we replace each entry of B  by its corresponding CPM ( )jαA , and let H  be an m n×  
array of CPMs with the size of ( 1)( 1)q q× −− , that is, H  is an ( 1) ( 1)m q n q× −−  matrix over 
GF(2). Then H  is an M N×  matrix which can be expressed as 
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1 1,0 1,1 1, 1
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(1) 
where the submatrix iH  is a ( 1)1) (nq q× −−  matrix containing n  CPMs and each ,i jA  
represents a ( 1)( 1)q q× −−  CPM. It is easy to conclude that iH  also possesses the property of 
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cyclical shifts like CPMs but not the same, since iH  has more than one CPM (each iH  has n  
CPMs). This structure allows it to cyclically shift all entries of one row only within their 
corresponding CPM for one time (we call this process cyclical shift within the sections). 

2.2 The CPM-QC-LDPC Decoding Algorithm 
Let H  be an m n×  array of CPMs with the size of ( 1)( 1)q q× −−  and iH , which contains n  
CPMs with the size of ( 1)( 1)q q× −− , be the i -th row-block of H . Let 

, , ,0 , ,1 , , 1( , ,..., )k s k s k s k s n−=h h h h  represent the s -th row of kH  with n  sections. Each section 

, , {0,1,..., 1}k s i i n∈ −h ，  contains ( 1)q −  elements (the -ths row of the -thi CPM). Thus, the expression of 

kH can be represented as  

                                       

,0 ,1 , 1

,0,0 ,0,2 ,0, 1

,1,0 ,1,2 ,1, 1

, 2,0 , 2

                         

,            ...       
,             ...       

     
                                         

,      

k k k k n

k k k n

k k k n

k q k q

−

−

−

− −

 =  

=

H A A A

h h h
h h h

h h





,2 , 2, 1

.

 ...       k q n− −

 
 
 
 
 
  h

                                             (2) 

It is easy to see that if we cyclically shift all the n  sections of ,k sh  one place to the right 
within the sections, we will get the ( 1)s + -th row , 1k s+h  of kH . Thus, all rows of kH  can be 
obtained by only cyclically shifting the first row of kH  within the sections. Similarly, all 
submatrices 0 1 1, ,..., m−H H H  can also be obtained by only cyclically shifting the first rows of all 
submatrices within the sections. 

Let *
0H  be the ( 1)m n q× −  matrix consisting of all first rows 0,0 1,0 1,0, ,..., m−h h h  of arrays 

0 1 1,.. ,, . m−HH H . By cyclically shifting the *
0H  within the sections 2q −  times, we can obtain 

the whole parity check matrix H . 
This structure property is of great benefit to the practical applications of CPM-QC-LDPC 

codes [14] in the sense that we can decode based on the submatrix *
0H  alone. Every time we 

decode the matrix *
0H , the reliabilities of the received symbols are updated with a chosen 

reliability updating algorithm. Then, the reliability vector and the received sequence are 
cyclically shifted and used as the input information to carry out the next decoding. After 
decoding the whole H  matrix, a hard-decision vector z  is formed based on the reliabilities of 
the decoded symbols. By computing the syndrome mod( ,2)· T=s z H , we can decide whether 
vector z  is the codeword. If it equals to 0 , the decoding process stops and z  is the codeword, 
otherwise the decoding process continues until the codeword is found or it exceeds the pre-set 
iteration number.  

From the structure of *
0H , we can conclude that the number of rows in *

0H  is only 1/ ( 1)q −  
of H , so in the procedure of implementing the hardware decoder, the size of message 
processing units for check nodes as well as the number of wires that connect to the check 
nodes and variable nodes are reduced to 1/ ( 1)q −  of those in H . 

3. The Proposed Decoding Algorithm 

3.1 The Establishment of Training Model 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018                                    3753 
 

At first, the transmitted information vector is entered into variable nodes, and all weights of 
edges in the Tanner graph are set to 1. Our data is created by transmitting the all-zero 
codeword on the additive white Gaussian noise (AWGN) channel with binary phase shift 
keying (BPSK) modulation.  

To start the NN training, we also need to set various 0/bE N , where bE  represents the 
average energy per information bit and 0N  represents the one-sided power spectral density. 
There are two extreme cases in NN training: when 0/bE N →∞ , it means NN trains the 
transmitted information without channel noise, so it can learn the code structure; when 

0/ 0bE N → , it means NN only trains the channel noise, without learning the code structure. 
This clearly indicates there will be some proper 0/bE N  that we can choose between these two 
cases. In reference [22], authors have performed some researh about how to choose the proper 

0/bE N . In our proposed method, 0/bE N  of 1 dB is chosen for NN training, so we can both 
learn the code structure and channel noise at the same time. 

Then, the inputs are multiplied by the corresponding weights and propagated through a 
nonlinear activation function, which is stimulated by the process of computing syndrome 

1 2 1( , ,..., {0) 1, , }M is s s s− ∈=s  to check whether the decoded vector 0 1 1( , ,..., ), {0,1}N iz z z z− ∈=z  is 
the codeword. Concisely, at the end of every iteration of the decoding, we usually compute the 
syndrome mod( ,2)· T=s z H  , if =s 0 , we may think z  is the codeword. For example, if we 
have a parity check matrix H , which can be represented in (3),  

                                                

1    0    0    1    0    0
0    1    1    0    1    0

,
1    0    0    0    1    1
0    0    1    0    0    1

 
 
 =
 
 
 

H                                                     (3) 

the process of computing s  can be described by 

                    1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6

1  0  1  0
0  1  0  0
0  1  0  1

· · .
1  0  0  0
0 

( , , , )

 1  1

(

  0
0  0  1

, , , , , ) ( , , , , , )

  1

Ts s s s z z z z z z z z z z z z=

 
 
 
 
 
 
 

  

= =



s H                (4)       

Then, mod( ,2)=s s . From the expression above we can see 1 1 4mod( ,2)s z z= + . To make it 
clear, we list the possible values in Table 1, 
 

Table 1. An illustration of possible values 
1z  2z  1s  

0 0 0 
1 1 0 
0 1 1 
1 0 1 

 
From Table 1 we can see only when 1z  equals to 2z , 1s  equals to 0; when 1z  does not equal to 

2z , 1s  equals to 1. This property is very similar with XOR gate which is a digital logic gate 
giving a true output when the number of true inputs is odd. Therefore, we can use an 
expression to represent this property, which is depicted as follows,     
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                                                 1 1 2 1 2 2 1( ) )1 (1s z z zz z z= ⊕ − + −= ,                                            (5) 
where ⊕  is the logic symbol representing the addition modulo 2 operation.   

Similarly, we can also compute 2 2 3 5mod( ,2)s z z z= + + , and the possible values are shown 
as follows, 
 

Table 2. An illustration of possible values 
2z  3z  5z  2s  

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

 
From Table 2, it is easy to conclude an expression for 2s  described as follows, 
                   2 5 3 32 3 5 2 2 2 3 3 2 5[1 (1 ) (1 )] [ (1 ) (1 )](1 )s z z z z z z z z z z z z z= ⊕ ⊕ = − − − − + − + − − .             (6)       
Therefore, the process of computing the syndrome s  can be depicted as follows,  
 

1 1 4mod( ,2)s z z= +

1 2 2 1 1 2(1 ) ( )1z z z zz z+ − == − ⊕

1z

4z

⊕

2z

5z

⊕
3z

2 2 3 5mod( ,2)s z z z= + +
5 32 2 2 3 3 2 53 2 3 5[1 (1 ) (1 )] [ (1 ) (1 )](1 )z z z z z z z z z z z z z= − − − − + − + − − = ⊕ ⊕

1z

kz

⊕

Nz

1 1··· ··· ··· ·mod( , ··2)k N k Nj z zz z zs z= + + ⊕+ ⊕=

 
Fig. 1. An illustration of computing the syndrome 

 
From the analysis above we can know the process of computing the syndrome is in binary 
domain consisting of 0 and 1. Stimulated by the analysis above, we extend the XOR function 
to real number field to obatin the activation function outputf  (and we call this function XOR 
function). More specifically, if there are only two inputs x  and y , the function is defined as 
follows 
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                                    ( , ) (1 ) (1 ).outputf x y x y x y y x= ⊕ = − + −                                         (7) 
At that time, the values of x  and y  range from ( , )−∞ +∞ , which is decided by the transmitted 
codeword, transmission energy and channel noise (signal to noise ratio). Then, we depict the 

outputf  as follows, 
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Fig. 2. The plot of XOR function 

 
From the Fig. 2 above we can easily see if [, 2, 2]x y∈ − , the range of ( , )outputf x y  is [ 12,8]− ; 

if [ 10 1, , 0]x y∈ − , the range of ( , )outputf x y  is [ 250,200]− . Theoretically, the range of ( , )outputf x y  
is from −∞  to +∞ , but in practical application, it always has borders because x  and y  are of 
low probability to be large numbers (the value is related to the codeword and signal to noise 
ratio).  

If there are three elements, activation function can be expressed as follows, 

                              

[ ] [ ]

( , , )
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= − + − − + − − − −

=
                       (8) 

Therefore, it is easy to conclude that if there are multiple inputs, the function can be written as 
                              ( , , ) (( ( , ), )= )output outputl x y lf f lx y x y k= ⊕⊕ ⊕ ⊕  .                           (9) 
In our paper, we use induction method to obtain the expression of outputf . Assume the size of 

the input set 1 2{ , ,..., }Nx x x  is N , the function outputf  can be written in terms of polynomials as 

                                              

1 1 2
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∑ ∑
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                                       (10) 

where i
NC  means the combination of all i  elements in N  elements.  
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We show the proof process in the Apendix. 
 For example, assume the input set has four elements 1 2 3 4{ , , , }x x x x , then 1

4 iC x∑   
means 1 2 3 4x x x x+ + + , 2

4 i jC x x∑  means 1 2 1 3 1 4 2 3 2 4 3 4x x x x x x x x x x x x+ + + + + , 
3
4 i j kC x x x∑  means 1 2 3 1 2 4 2 3 4 1 3 4x x x x x x x x x x x x+ + + and 4

4 1 2 3 4C x x x x∑   means 1 2 3 4x x x x , thus the 
expression of outputf  is 

                       

0
1 2 3 4 1 2 3 4

1
1 2 1 3 1 4 2 3 2 4 3 4

1 2 3 1 3 4 1 2 4 2 3
2

4

( ) ( 2) ( )

                                ( 2) ( )

                                ( 2) ( )

                      

, ,

   

,outputf x x x x x

x x x x x x x x x x x x

x x x x x x x x x x

x x

x

x

x

= − + + +

+ − + + + + +

+ − + + +

1 2 3 4
3       ( 2) .x x x x+ −

                     (11) 

Using the nonlinear activation function outputf  for every check node, we can obtain the 
corresponding output 0,1.., ( 1) 1[ ]j j m qo = − −=o , where jo  means the output of the j -th check node. 
For example, if the parity check matrix is the same as (3), we can obtain o  by computing 

10 4( , )outputo f x x= , 21 3 5( , , )outpuo f x x x= , 12 5 6( , , )outputo f x x x=  and 3 3 6( , )outputo f x x= . After we have 
the output o , we should also need to define a specific loss function E  to find the optimal 
weights. The most common loss functions are the mean squared error function (MSE) and the 
binary cross-entropy function (BCE), which can be defined as  

                                                     ( )2

MSE
ˆ ,1

i i
i

b b
M

E = −∑                                                    (12) 

                                       ( ) ( )BCE ln (1 ) ln ˆ11 ˆ ,i i i i
i

b bbE b
M

= − + − 
 −∑                                     (13) 

where ib  is the i -th expected value and îb  is the i -th estimate value, M  is the sample 
number. In our proposed method, we adapt the MSE function as loss function, depicted as  

                                       
1 1 1

0 0 0

2 2 21 1 1( ) (0 ) ( ) ,j j j

M M M

j j j
E e o o

M M M

− − −

= = =

= = − =∑ ∑ ∑                                    (14) 

where the expected output is (0,0, ),0… , je  is the difference between the j -th expected value 
and the actual value jo .  

Then, we can use the XOR function and the loss function to compute the optimal weights of 
the Tanner graph. From the expression of Equation (10), it is shown that function outputf  is 
differential and qualified to be used in a gradient descent algorithm, which is a typical method 
used in NN. Therefore, we use the gradient descent algorithm to train and obtain the weights 

, {0,1,..., ( 1) 1}, {0,1,..., ( 1) 1}[ ]j k j m q k n qw ∈ − − ∈ − −=W  in the following way, 

                                           
( )

( 1) ( 1) ( ) ( 1)
( ) , ,
l

l l l l
l

Eµ+ + +∆ = −
∂

+ ∆
∂

=W W WW
W

                             (15) 

here, the superscript ( 1)l +  represents the ( 1)l + -th iteration, µ  is the learning rate, ∆W  is the 
variance value of W  and E  is the loss function. With the help of gradient descent algorithm, 
we can find the optimized weights of Tanner graph which can minimize the loss function E .  

Finally, when it comes to the iterations that we preset, the training process stops and we will 
finally obtain the final weights of Tanner graph W .  

To make our training model more understandable, an example was given as follows. The 
parity check matrix H  is 
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1     1     0     1     0     0
0     1     1     0     1     0

.
1     0     0     0     1     1
0     0     1     1     0     1

 
 
 =
 
 
 

H                                              (16) 

Its Tanner graph is shown in Fig. 3, where there are six variable nodes 0 1 5{VN ,VN ,...,VN } and 
four check nodes 0 1 2 3{CN ,CN ,CN ,CN } . In the first iteration, all weights of edges are set to 1. 
Then inputs multiply the corresponding weights and propagate through the nonlinear 
activation function outputf , where we obtain the output (1) (1) (1) (1)

0 1 2 3{ , , , }o o o o=o . 
 

VN0

VN1

VN2

VN3

VN4

VN5

CN0

CN1

CN2

CN3

1,1 1w =

0,0 1w =

0,1 1w =

0,3 1w =

1,2 1w =

1,4 1w =

3,5 1w =

2,5 1w =

2,4 1w =
3,3 1w =

3,2 1w =

0x

1x

2x

3x

4x

5x

0 0 0 1 3(1 ,1 ,1 )outputo f x x x= ⋅ ⋅ ⋅

11 421(1 ,1 ,1 )outputo f x x x= ⋅ ⋅ ⋅

12 0 4 5(1 ,1 ,1 )outputo f x x x= ⋅ ⋅ ⋅

13 2 3 5(1 ,1 ,1 )outputo f x x x= ⋅ ⋅ ⋅

(1)
0 00e o= −

1
(1)
1 0e o= −

2
(1)
2 0e o= −

3
( )
3 0le o= −

(1) (1) 2 (1) 2 (1) 2
3 3 3

0 0 0

1 1 1( ) (0 ) ( ) ,
4 4 4j j j

j j j
E e o o

= = =

= = − =∑ ∑ ∑

 
Fig. 3. An example to illustrate training model: the first iteration 

 
Then we can obtain the MSE by computing  

                                   (1) (1) 2 (1) 2 (1) 2
3 3 3

0 0 0

1 1 1( ) (0 ) ( ) .
4 4 4j j j

j j j
E e o o

= = =

= = − =∑ ∑ ∑                                (17) 

According to Equation (15), after we obtain MSE, we can get (2)∆W  and make corrections to 
the weights (2) (1) (2)= + ∆WW W . For the l -th iteration, we can see from Fig. 4. 

In the l -th iteration, the inputs multiply the corresponding weights and propagate through 
the nonlinear activation function. Specifically, for the first check node, its output is 

( ) ( ) ( ) ( )
0 0 0,0 0 0,1 1 0,3 3( , , )l l l l

outputo f w x w x w x= ⋅ ⋅ ⋅ . Based on ( )( ( ) ( ) ( )
0 1 2 3

) { , , , }l l ll lo o o o=o , we can obtain the MSE 
( )lE  and ( 1)l+∆W  according to Equations (14) and (15). Then we can make corrections to 

( 1)l+W  and start the next iteration. When it comes to the iteration number that we preset, the 
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training stops and we obtain the weights W . 
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2
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l
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=

∑ ∑

∑

( )
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l
l

Eµ+ ∂
∂

∆ = −
W

W

( 1) ( ) ( 1) ,l l l+ += + ∆WW W

( ) ( 1) ( )l l l−= + ∆WW W

 
Fig. 4. An example to illustrate the training model: the l -th iteration 

 
In conclusion, it is worth mentioning that our activation function is simulated by computing 

the syndrome for every check node. Its aim is to utilize the output of the XOR function to alter 
the weights of the Tanner graph, which indirectly alters the value of the inputs by multiplying 
them in the process of decoding. In this way, it will reduce the influence by the channel noise 
and therefore, have a positive effect on the convergence rate and also the decoding 
performance. Concisely, if all inputs can be correctly decoded by decoding scheme, 
multiplying weights with inputs can make the decoding convergence faster to the codeword; if 
there are some abrupt errors occurring, multiplying weights with inputs can reduce the effects 
of errors. Consequently, the decoding performance will be improved. 

3.2 Modification to the CPM-RID Decoding Algorithm 
Now, we obtain the weights of the Tanner graph and assign them to the submatrix that we 
constructed. The construction method of the submatrix is the same as that in literature [14], 
where matrix *

0H  consists of all first rows 0,0 1,0 1,0, ,..., m−h h h  of m  row blocks 0 1 m-1H ,H , ...,H . 
In a similar manner, *

1H  is constructed of all second rows 0,1 1,1 1,1, ,..., m−h h h  and *
iH  is 

constructed by all 1i +  rows 0, 1, 1,, ,...,i i m i−h h h . Therefore, we obtain 1q −  matrix * * *
0 1 2q−H ,H , ...,H  

and treat every matrix *
iH  as a block-layer. 

During the process of decoding one submatrix *
iH , we choose a parallel mechanism to 

update the reliability information for check nodes and variable nodes, such as scaled MSA in 
our method. According to the conventional iterative decoding algorithm, the messages 
transmit along their corresponding edges to update the information, while in our proposed 
method, when messages transmit along their corresponding edges, they multiply the 
corresponding weights to update the information. For the decoding between various 
submatrices we adapt the serial mechanism, that is, we take the reliability vector for variable 
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nodes as the input vector for the next submatrix *
1i+H  and carry on another decoding. Finally, 

after every m  iterations, we compute the syndrome and check whether it successfully 
decodes.  

3.3 Summary 
We use 0 1 ( 1) 1( , ,..., )n qy y y − −=y  to represent the soft-decision received vector at the output of the 
receiver detector. Let , 0 ( 1),0 ( 1)[ ] t m qt j j n qh ≤ < − ≤ < −=H  denote the whole parity check matrix, 

,( ) { : 0 ( 1), 1}t jN j t t m q h= ≤ < − =  denote all check nodes which are connected to the j -th 
variable node, and ,( ) { : 0 ( 1), 1}t jM t j j n q h= ≤ < − =  denote all variable nodes which are 
connected to the t -th check node. Let ( ) ( ) ( ) ( )

0 1 ( 1) 1( , , ..., )i i i i
n qQ Q Q − −=Q  denote the updated reliability 

information vector at the end of the i -th iteration for variable nodes, and 
( ) ( ) ( ) ( )

0 1 ( 1) 1( , , ..., )i i i i
m qR R R − −=R  denote the updated reliability information vector at the end of the 

i -th iteration for check nodes. In scaled MSA-based reliability information updating 
algorithms, there is always an attenuation factor to reduce the error due to the approximation 
of the formula [15]. In our proposed algorithm, we use λ  to represent the attenuation factor, 
which will be shown in Equation (20).   

With the above notations, our proposed method is clearly explained below. 
 

Proposed Method 
Step 1: Train the weights of the training model using gradient descent algorithm and alter the 
weights using 

                                               
( )

( 1) ( 1) ( ) ( 1)
( ) , .
l

l l l l
l

Eµ+ + +∆ = −
∂

+ ∆
∂

=W W WW
W

                               (18) 

Step 2: When it comes to the training number we preset, the training process stops and saves 
the weights , {0,1,..., ( 1) 1}, {0,1,..., ( 1) 1}[ ]j k j m q k n qw ∈ − − ∈ − −=W . Check the weights and judge whether 
overfitting occurs. If it happens, go to Step 1 and adjust parameters µ  to restart the training. If 
not, go to Step 3. 
Step 3: Divide parity check matrix H  into 1q −  submatrices * * *

0 1 2q−H ,H , ...,H . 
Step 4: Set (0)

j jQ y=  for all 0 ( 1)j n q≤ < −  and (0) 0tR =  for all 0 ( 1)t m q≤ < − . Allocate the 
weights , {0,1,..., ( 1) 1}, {0,1,..., ( 1) 1}[ ]j k j m q k n qw ∈ − − ∈ − −=W  to the edges in the Tanner graph.  
Step 5: Carry out the i -th iteration based on *

iH : 
(1) If  mod  0i m ≠ , compute the reliability vector ( )iQ  and ( )iR : 
                    ( )mod , ' mod , '\\

( ) ( 1) ( 1)

( )( )
sign( ) min ,t i m j i m

i i i
j jj M tj M t

jjj
w w QR Q − −

′ ′′∈′∈

 = ∏ ⋅ ⋅  
×                       (19) 

                                                      ( ) ( 1) ( )
( ) ,i i i

j j t N j tQ Q R λ−
∈= + ×∑                                                     (20) 

Otherwise  mod  0i m = , then go to Step 6; 
(2) Take reliability vector of i -th iteration as ( 1)i + -th input vector, and go to Step 5-(1). 

Step 6: Compute the syndrome · T=s z H . If ≠s 0 , 1i i← + , then go to Step 5; otherwise =s 0 , 
stop the process and output the codeword. Use the reliability vector to compute the hard 
decision vector z .   
 

It is worth mentioning that the parameters chosen for learning rate µ  and training number 
are skillful in NN training. To choose proper values, we tend to perform many various 
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experiments to choose the optimal parameters or some algorithms like greedy sequential 
methods. Such a kind of question is named hyperparameter optimization, which is well studied 
in [23]. In our paper, we do not take the optimization method into consideration because we 
mainly focus on the efficiency of our proposed method. Therefore, after many various 
experiments and comparing their results, we finally set learning rate 0.001 and training 
number 10000.  

As for the parameter λ  for computing the ( )i
jQ  (see in (20)) in our method, we also perform 

some experiments to find a proper value of λ . For example, we perform various experiments 
using scaled MSA algorithm with various values of λ  on (720,360) CPM-QC-LDPC code 
which is constructed using the method described in [14]. The decoding iteration is 50 and the 
experimental results are shown as follows, 
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Fig. 5. The decoding performance with various attenuation factors 

 
From the Fig. 5 above, we can see different values of λ  have different impacts on the 

decoding performance. When λ  equals to approximate 0.8, the decoding performance is the 
best. Using the same method, we can finally choose the proper attenuation factor. In our paper, 
we choose 0.8λ = . 

4. Experiments and Complexity Analysis 

4.1 Experiments 
In this section, we will present the MATLAB simulation results of our proposed method for 
CPM-QC-LDPC code with various lengths, and compare the bit error rate (BER) and frame 
error rate (FER) performance with that of scaled MSA and CPM-RID decoding algorithms. 

Because our proposed method is performed on CPM-QC-LDPC code, we should first 
construct some efficient codes. The detailed method is described in Reference [14]. Briefly, 
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we first choose the finite field GF(97) and construct two arbitrary subsets 1 2 3 4
1 { , , , }S α α α α=  

and 5 6 12
2 { , ,..., }S α α α= . Then, we construct a base matrix B  by 

                                         

1 5 1 6 1 1

2 5 6 2

3 5 6

4 5 6

2

2 12

3 3 12

4 4 12

                  
                  
                  
                  

α α α α α α

α α α α α α

α α α α α α

α α α α α α

 + + +
 

+ + + =  + + + 
 + + + 

B









.                                  (21) 

We can see B  is a 4 8×  matrix. Then we replace all entries in B  with CPMs with the size of 
96 96× , and we can get a parity check matrix H  with the size of 384 768× . The null space of 
H  represents a (768,384) CPM-QC-LDPC code C  with the rate of 1/2.  

Then, we perform three decoding algorithms on (768,384) CPM-QC-LDPC code C , three 
algorithms are performed 5 iterations and 10 iterations, respectively. For CPM-RID decoding 
scheme, we first construct a submatrix *

0H  with the size of 4 768×  to decode. For our proposed 
method, we first use NN to train the weights of Tanner graph and then start to decode. The 
experimental results are shown in Fig. 6.  
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Fig. 6. Decoding performance comparison for (768,384) CPM-QC-LDPC code 

 
From Fig. 6, it is easy to see our proposed method has a better and faster convergence rate 

than that of other two algorithms. Concisely, compared with MSA scheme decoded with 5 
iterations, CPM-RID scheme with 5 iterations has a faster decoding performance (there is an 
approximate 0.2 dB coding gain), while our proposed method has a better performance (when 
BER is 310− , there is a 0.4 dB coding gain compared with that of MSA scheme and a 0.2 dB 
coding gain compared with that of CPM-RID scheme). When iteration equals to 10, there is 
also a visible coding gain using our proposed method.  

Then, we compare the bit error rate performance and frame error rate performance of three 
algorithms, and finally show the results in Fig. 7 and Fig. 8. In this experiment, we perform 
MSA scheme with 50 iterations, perform CPM-RID scheme with 35 iterations and proposed 
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method with 30 iterations.   
After many experiments, we find when we choose 50 iterations for MSA scheme, 35 

iterations for CPM-RID scheme and 30 iterations for our proposed method, they all achieve 
their best decoding performance. From Fig. 7 and Fig. 8, we can see our proposed method 
decoded with 30 times perform slightly better than that of MSA with 50 iterations and 
CPM-RID scheme with 35 iterations. 

 

0 1 2 3 4 5 6 7

Eb/N0(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

BE
R

BER performance comparison

MSA with 50 iterations

CPM-RID with 35 iterations

proposed method with 30 iterations

BPSK

Shannon Limit

 
Fig. 7. BER performance comparison for (768,384) 
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Fig. 8. FER performance comparison for (768,384) 

CPM-QC-LDPC code 
 
To illustrate the efficiency of the improvement on convergence rate, we also perform 

another experiment to compare the iterations that we need to achieve the best performance. 
We choose 0/ 2bE N =  dB and 0/ 2.4bE N =  dB in this experiment, and depict the results in 
Fig. 9. Concisely, when 0/ 2bE N =  dB, MSA scheme requires 20 iterations to achieve a stable 
decoding performance. CPM-RID scheme needs 15 iterations while our proposed method only 
needs 12 iterations. When 0/ 2.4bE N =  dB, it requires 12 iterations for MSA and 10 iterations 
for CPM-RID to achieve a stable performance. However, our proposed method only needs 7 
iterations. 

4.2 Complexity Analysis 
In this part we mainly analyze the implementation complexity, which is crucial to LDPC 
decoder. We assume we construct the code based on the finite field GF(q). Then, we construct 
a m n×  base matrix B . After replacing all entries in B  with CPMs with the size of 

( 1)( 1)q q× −− , we obtain a parity check matrix ( 1) ( 1)m q n q− × −H , whose null space represents a 
( ( 1), ( )( 1))n q n m q− − −  CPM-QC-LDPC code C  with the rate of 1 /m n− . The row weight of 

( 1) ( 1)m q n q− × −H  is n  and the column weight is m . For CPM-RID and our proposed method, we 
construct the submatrix *

0H  with the size of ( 1)m n q× − . 
We first analyze the decoder complexity for three algorithms. We assume each real number 

information is quantized by b  bits. For MSA scheme, it requires ( 1)n q b−  binary memory 
units to store { }jy=y  and ( 1)n q b−  binary memory units to store the reliability information 

{ }jQ=Q . Because the information update Equation (19) in MSA should be  
                                     { }( ) ( 1) (

( \
1)

) s[ ign( ) [mi .] n | | ]i i i
j M t j j jt Q QR − −
′ ′ ′∈ ×= ∏                                  (22) 
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Fig. 9. Convergence rate comparison with various algorithms 

 
(the meanings of symbols in Equation (22) are the same as those in section 3.3), it requires 
2( 1)b −  binary memory units to store the two smallest magnitudes of the information of 
adjacent variable nodes for each check node, 2log n    binary memory units to store the 
location of the smallest magnitude of the information of adjacent variable nodes, and n  units 
for signs of the information of adjacent variable nodes. Because there are ( 1)m q −  check nodes, 
we totally need 2( 1) 2( 1) logm q b n n−  − + +  +     2 ( 1)n q b−  binary memory units for MSA 
decoder.  

Similarly, we can use the same method to analyze the decoder complexity for CPM-RID 
scheme and our proposed method. For CPM-RID scheme, we decode based on *

0H , which is a 
( 1)m n q× −  submatrix of H . Therefore, we only require 22( 1) log 2 ( 1)m b n n n q b − + +  + −     

binary memory units for CPM-RID scheme. Because there are only mn  non-zero elements in 
*
0H  (it means mn  edges in the Tanner graph of *

0H ), so we need extra mnb  binary memory 
units to store the weighs. The total resources required for our proposed method is 

22( 1) log 2 ( 1)m b n n n q b mnb − + +  + − +    . To make it clear, we present the information in 
Table 3 as follows. 

Then, we consider the computational complexity comparison among three algorithms. It is 
worth mentioning that we do not take the training complexity into consideration in our 
proposed method. That is simply because after we train the weights, we only need to save them 
and use them to help decode. It is also worth mentioning that in those three decoding 
algorithms, the process which brings out main complexity is the information update process to 
update the Q . Therefore, we only consider and compare the complexity brought out by the 
information update process of three algorithms. To make it clear, we list three information 
update processes in Table 4 (the meanings of symbols are the same as those in Section 3.3). 
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Table 3. A comparison of decoder complexity 

Decoding Scheme Decoder complexity 
MSA 2( 1) 2( 1) log 2 ( 1)m q b n n n q b−  − + +  + −     

CPM-RID 22( 1) log 2 ( 1)m b n n n q b − + +  + −     

Proposed method 22( 1) log 2 ( 1)m b n n n q b mnb − + +  + − +     

 
Table 4. An illustration of three information update processes 

Decoding Scheme Information update process 

MSA                 ( )( ) ( 1) ( 1)

( )( ) \\
sign( ) mini i i

j jj M t jj M t j
tR Q Q− −

′ ′′∈′∈

 = ∏ 
×


                             (23) 

CPM-RID                 ( )( ) ( 1) ( 1)

( )( ) \\
sign( ) mini i i

j jj M t jj M t j
tR Q Q− −

′ ′′∈′∈

 = ∏ 
×


                             (24) 

Proposed method ( )( ) ( 1)
mod , ' mod , '\

( 1)

)\ ( )(
sign( ) mint i m

i i i
j jj M t jj M t

i
j

j m jw QR w Q− −
′ ′′∈′∈

 = ∏ ⋅ ⋅ 
×


       (25) 

 
From Equation (23) and (24), we can see in each iteration for MSA and CPM-RID, we need 

to carry out 23 log ( ) 2n n+ −    real number computations ( 2 1n −  computations for sign 
operation and 2log 1n n+ −    computations for comparion operation), while in (25), we need 
to carry out extra n  multiplication operations. However, for various decoding schemes, they 
have different convergence rates, so it is fair to consider the iterations required for those 
schemes. Assume MSA scheme requires 1iter  iterations to achieve a stable decoding 
performance, CPM-RID requires 2iter  iterations and our proposed method requires 3iter  , we 
present the computational complexity for information update in Table 5, 

 
Table 5. An illustration of computational complexity 

Decoding Scheme Computational complexity comparison for information update  
MSA 1 23 log ( ) 2  additionsiter n n + −    ×  

CPM-RID 2 23 log ( ) 2  additionsiter n n + −    ×  

Proposed method 3 2 33 log 2  additions  multiplications( )n iter niter n×  + −  + ×     
 

In each iteration, we can see our proposed method has a higher computational complexity 
than that of other two schemes. However, if we take the convergence rate into consideration, 
that is, our proposed method has fewer iterations to achieve a stable decoding performance, it 
is possible for our proposed method to have a similar computational complexity with that of 
other two schemes. 

5. Conclusion 
A combination of neural network training and CPM-RID decoding algorithm is presented in 
this paper.  

At first, we constructed an activation function for check nodes and established a neural 
network model to train weights and assign them to the edges in a Tanner graph. Next, we 
modified the original CPM-RID algorithm by directly dividing the parity check matrix into 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018                                    3765 
 

some submatrices. In the process of decoding a submatrix we chose parallel mechanism, while 
between various submatrices we chose serial mechanism. Finally, the trained weights and 
modified CPM-RID algorithm are combined. The whole decoding process can be treated as 
decoding block-by-block with weights. Our simulation experiments include the comparisons 
among three algorithms, that is, scaled MSA algorithm, CPM-RID algorithm and our 
proposed method. We find that our proposed algorithm has the lowest BER and FER and the 
fastest convergence rate, which verifies the merits of our proposed method. 

Appendix 
Proof of equation (10). 
In this paper, we use the induction method from Mathematics to verify the expression of outputf . 
Let n  denotes the number of the input elements. 

If there are only two inputs 1 2{ , }x x , that is, 2n = , then we have 
1 2 1 2

1 2 1 2

1 2 1 2

0 1 1 2

( , )
                   (1 ) (1 )
                   2

                   ( 2) ( 2) .

output

in i n j

f x x x x
x x x x
x x x x

x x xC C

= ⊕

= − + −
= + −

= − + −∑ ∑ 

 

In the case of n N= , we assume the expression of 1 2,( ), ,output Nxx xf   is 

1 2 1 2 3

1 2

0 1 1 2

1
1 2

( , ) ( ( , ) )
                              

                              ( 2) ( 2)

                                .

, ,

( 2)

output N output N

N

n i n i j

N N
n N

x x
x

C C

f x f x x x x
x x

x x x

C x x x−

= ⊕ ⊕

= ⊕ ⊕

= − + −

…

+ −+

⊕

∑ ∑
∑







 

 

 

Now assume that ' 1n N= +  (here, we use 'n  to distinguish with n N= ), we get  

1 2 1 1 2 3

1 2 1

1 2 1

( , , ) ( ( ) )
                                      
                                      ( , )
                               

, ,

, ,
    

output N N output N

N N

output N N

x x
x

f x x f x x x x
x x x

xf x x x

+

+

+

= ⊕ ⊕ ⊕

= ⊕

…

⊕ ⊕
⊕

⊕
= …





1 2 1 1 2 1

1 2 1 1 2 1

   [1 ( , )] ( , ) (1 )
                                  

, , , ,
, ,    , ,[ ( , ) ] 2 ( , ) .

output N N output N N

output N N output N N

f x x x x x x
x

f x x
f x x f x xx x x

+ +

+ +

= − ⋅ + ⋅ −

= …+ − ⋅ ⋅

… …

…

 

Then we substitute the expression of 1 2,( ), ,output Nxx xf   and obtain  
1 2 1

1 1 1 2 1 1

1 0 1 1 2 1
1 2 1

n( ) ( ) ( 2)

                                   ( 2)

                 

, , , (

      

2)

( 2) ( 2) ( 2)

N N
output N N N N i j N

N N
n i n i j

n

n N N

x x x x x Cf x x x x C x

C x C

x

x C x x x xx

−
+ +

−
+

+ + + + + + −

− + − + +

 = + − 
 + −  − ⋅

∑ ∑

∑ ∑ ∑

 

   

  

 

0 1 1 2 1
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1
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N N
n i n i j n N

N N
n N

C C C x x xx x

C x x x
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+
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∑
  

 





Therefore, we have the expression of (3) by induction. 
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