• Title/Summary/Keyword: deck slab

Search Result 253, Processing Time 0.041 seconds

A Experimental Study on the Static Strengthen Effect of Bridge Deck Strengthened with GFS (GFS로 성능향상된 교량 바닥판의 정적 보강효과)

  • 심종성;오홍섭;류승무;박성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.739-744
    • /
    • 2001
  • The concrete bridge deck is quitely required to be replaced or strengthened due to decreasing load carrying capacity. In this study, to increase load capacity of the reinforced concrete slab, bridge deck is reinforced with the glass fiber sheets. they are examined on the strengthen effect and the static behavior, This paper considers relation of load-displacement and strain-distance. The static behavior of the slab strengthened is represented to maximum load. Owing to that, they are examined on increasing load carrying capacity of reinforced bridge deck and strengthen effect about on the crack.

  • PDF

The Experimental Study on Transverse Field Joint Method of Precast Road Deck Slab of Double Deck Tunnel in Great Depth (대심도 복층터널 프리캐스트 중간슬래브의 횡방향 현장이음방식에 대한 실험연구)

  • Lee, Doo-Sung;Kim, Bo-Yeon;Bae, Chul-Gi;Hur, Jae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2017
  • The joints between precast PSC slabs of the intermediate road slab in double deck tunnel are inevitably generated in the road traffic vehicle traveling direction. Therefore, it is important to make the behavior of parts on the joint in one piece. The imtermediate road slab system of double deck tunnel in great depth proposed in this study will be constructed with precast PSC slab in order to minimize the construction period. And the joint connection between the precast slab has been developed in two methods: the 'Transverse tendon reinforcement method' and 'High strength bolts connection method'. Also, the experiments were performed for the full scale model in order to evaluate the performance of the intermediate road deck slab with two type joints systems, the structural stability was verified through the F.E.M analsysis. The results of static loading test and F.E.M analysis investigated a very stable behavior of intermediate road deck slab in double deck tunnel applying the joint methods developed in this study, in the cracks and deflections to satisfy the design standards of Highway Roads Bridges (2011), it was determined that there is no problem even servicebility.

Experimental Study on Bending and Shear Performance of Deck Type Void Slab with Trapezoidal Hollow Ball (사다리꼴 형상의 경량체를 가진 데크형 중공슬래브의 휨 및 전단성능에 대한 실험적 연구)

  • Kim, Pil Jung;Kim, Sang Mo;Park, Joon Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.443-453
    • /
    • 2017
  • In this study, a trapezoidal hollow ball is used, instead of a spherical hollow ball commonly used in void slab, to secure the high hollow ratio in the deck type void slab. The bending and shear performance was measured with consideration for the shape change of the hollow ball. And to confirm the effect of deck plate and truss wire on shear performance, experiments were performed depending on the installation directions of the one-way deck plate. As a result, the bending performance of the deck type void slab with a trapezoidal hollow ball was similar to that of the void slab with a spherical hollow ball. However, according to the data of shear strength examined, the contribution of shear performance enhancement of the truss wire had a more effect on the shear performance of deck type void slab, rather than the influence by changing of the shape of hollow ball. In the previous studies, the shear strength is reduced to about 60%, due to the reduction of the effective section of concrete by installation of hollow ball. But in this experiment, the maximum load of specimen, in which the deck was installed in horizontal direction, so expected to have no influence on the shear performance, was only reduced to about 87%, due to the truss framework of truss wire.

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

Bending Behaviour of Composite Slab Using a New-Shaped Steel Deck Plate and Expanded Metal (신형 데크플레이트와 철판망을 적용한 합성슬래브의 휨 거동)

  • Kim, Myoung Mo;Eom, Chul Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.403-412
    • /
    • 2003
  • The composite metal deck plate system has been widely used for office structures. Recently, however, the flat deck plate has been developed to apply the composite slab system to residential structures. Reduction in construction cost and time can be expected by using expanded metal instead of wire mesh as crack control reinforcements. This study proposed a composite slab system composed of a new-shaped steel deck plate and expanded metal. Twelve specimens were tested to evaluate the structural performance of the new composite slab system. The test results were summarized mainly in terms of maximum load carrying capacity and failure behaviors of each specimen.

Practical Modeling for the Vibration Analysis of a Composite Deck Slab Structures (합성데크 바닥판 구조물의 진동해석을 위한 실용적인 모형화)

  • Kim, Jae-Yeol;Kim, Gee-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.43-50
    • /
    • 2005
  • Composite slab structures consisted with steel deck plate and concrete material show generally anisotropic structural behavior because of different stillness between the major direction and sub-direction of deck plate, and also the structures can be regarded as the laminated slab structures. It is necessary for the composite deck slab structures to carry out the exact vibration analysis to evaluate the serviceability. Also, it is needed to evaluate the exact structural behavior of composite deck slab with a layered orthotropic materials. In this paper, the thickness of lopping concrete and deck plate are used to calculate the material coefficient stiffness of a sub-direction, and an equivalent depth calculated from sectional stiffness of concrete and deck plate is applied to get the silliness of a major direction. The stiffness of two layered composite plates with different depth is determined by laminated theory. It is concluded that the presented method car efficiently analyze the structural behavior of composite deck slab consisted with steel deck plate and concrete material in the practical engineering field.

The Study of the Roughness of the Pavement on the Bridge Deck and Approach Slab using a 5year(2003 to 2007) Pavement Condition Survey Data (HPMS 데이터를 이용한 고속도로 교량 및 뒷채움구간 평탄성 특성 연구)

  • Park, Sang-Wook;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2008
  • Using a 5 year(2003 to 2007) pavement condition survey data from the highway pavement management system(HPMS), the roughness of the bridge deck pavement was analyzed. Based on the result of this analysis, this study tried to identify the factors affecting the deterioration of the bridge deck pavement condition. The data from HPMS indicates that the roughness of the bridge deck pavement is worse than that of the general pavement on the roadbed. The worse roughness of the bridge deck pavement is caused by the settlement of approach slab as well as the surface distress on the bridge deck pavement. In order to improve effectively the roughness of the bridge deck pavement, a management system was established in which not only the regular automated pavement condition survey to check the distress of surface of the bridge deck pavement was adopted but an automated surface profiler to check the degree of settlement of approach slab was applied.

  • PDF

Evaluation on the Vibration Performance for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam (데크플레이트와 경량성형재가 결합된 중공슬래브의 진동성능에 대한 실물실험 평가)

  • Cho, Seung-Ho;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.86-92
    • /
    • 2017
  • The possibility to development of floor vibration problem is larger in case of long span structure under service loads. Therefore, to improve the vibration performance of the floor, increasing of its thickness is a common method. But, increasing of thickness can lead to increase of slab self weight and reduce the effectiveness of the building. For this reason, attention for voided slab which reduces the self-weight is increasing. Hence, voided deck slab combined with deck plate and polystyrene void foam which has buoyancy prevention capacity and much developed construct ability has bee developed. By using the developed voided slab, vibration performance of a mock-up building structure has been investigated in the current study. The results according to analysis showed that they can be implemented in living and bedroom which are considered as 1st grade on the basis of "Residential Evaluation Guidelines for Vibration of Buildings" by the Architectural Institute of Japan.

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.

Experimental Study on Flexural Performance of Composite Slabs Reinforced with GFRP-Deckplate (GFRP-데크플레이트로 보강한 합성 슬래브의 휨성능 평가에 관한 실험적 연구)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.165-170
    • /
    • 2009
  • In this study, the flexural experiment was conducted to propose the one-way composite slab system composed of concrete and GFRP-Deckplate by comparing with the composite deck slab system with bar-mesh As a result of experiment, the specimens of the proposed GFRP-Deck composite slab were better than the specimens for comparison in the flexural performance. It is effective for the building structures exposed to air pollution or salt.