과거에는 경영의사결정에 적절한 정보를 적시에 제공할 수 없기 때문에 불확실한 경영을 했으며 경영자는 주관적인 경험과 판단 등에 의지하였다. 정보기술의 발달과 더불어 발전한 정보시스템과 기술은 비즈니스 운영면에서 고도의 효율성과 생산성을 달성하기 위하여 관리자가 활용할 수 있는 가장 중요한 도구 중에 속한다. 이것의 효과는 비즈니스 실무와 관리행태의 변화가 동반되었을때 더욱 크게 나타난다. 본 연구에서는 기업의 전략적 의사결정에 필요한 문제를 해결하기 위하여 정보기술을 활용하여 필요한 정보를 획득하고 문제해결 방법론을 시뮬레이션 하여 객관적이고 정형화된 경영의사결정을 지원하는 시스템을 개발하기위한 기능요소 및 솔루션을 구조화하였다. 본 연구에서 제안하는 전략의사결정지원 시스템은 기업경영 지원기술에 관련된 것으로 IT기술을 활용하여 경영의사결정에서 요구되는 전략의사결정 문제에 있어서 최적의 시나리오를 선택하도록 하여 신뢰성 있는 기업경영에 도움을 줄 수 있는 시스템이다. 전략의사결정시스템은 개별사업 시뮬레이션과 전사사업 시뮬레이션, 전사사업 포트폴리오 관리 등 크게 세 가지 기능부문으로 나누어 볼 수 있다. 본 시스템은 객관적이고 정형화된 컨설팅 결과를 제공함으로써 신뢰성을 보장할 수 있고, 급변하는 경영 여건에 효율적으로 대응할 수 있는 유용한 효과를 기대할 수 있다.
The 10th International Conference on Construction Engineering and Project Management
/
pp.145-151
/
2024
Road sign support systems are not usually well managed because bridges and pavement have budget and maintenance priority while the sign boards and sign supports are considered as miscellaneous items. The authors of this paper suggested the implementation of simplified machine learning algorithms for asset risk management in highway sign support systems. By harnessing historical and real-time data, machine learning models can forecast potential vulnerabilities, enabling early intervention and proactive maintenance protocols. The raw data were collected from the Connecticut Department of Transportation (CTDOT) asset management database that includes asset ages, repair history, installation and repair costs, and other administrative information. While there are many advanced and complicated structural deterioration prediction models, a simple deterioration curve is assumed, and prediction model has been developed using machine learning algorithm to determine the risk assessment and prediction. The integration of simplified machine learning in asset risk management for highway sign support systems not only enables predictive maintenance but also optimizes resource allocation. This approach ensures that decision-makers are not inundated with excessive detailed information, making it particularly practical for industry application.
이 논문에서는 일개 POC(Point Of Care) 시스템을 사용하는 의료기관을 중심으로 의약품 처방조제지원 시스템(Clinical Decision Support System, CDSS)과 조직성과와의 관계를 규명하는 것에 목적을 두고 있다. 이를 위하여 정보시스템 평가요소에 대해 정의를 내리고, CDSS의 성과 평가 모형을 제시하여 설문조사 분석을 통해 의약품 처방조제지원시스템의 도입 효과를 밝히고자 하였다. 분석결과 시스템 품질을 제외하고는 각 평가 영역들 사이에 인과성이 존재하는 것으로 분석되었으며, 통계적으로 유의하게 지지되는 것으로 분석되었다. 평가모형 검증결과 의약품처방최적화를 위한 CDSS의 시스템 품질이 사용자 만족도에 영향을 미친다는 근거를 발견할 수 없었다. 그러나 정보품질이 사용자의 만족도에 긍정적인 영향을 미치며 사용자 만족은 조직성과에 긍정적인 영향을 미치는 것으로 나타났다.
This study attempted to analyze the factors that influence the participation of beneficiary companies in the government's defense industry promotion support project. To this end, experimental data were analyzed by constructing a prediction model consisting of highly important variables in beneficiary company decisions among various company information using the decision tree model, one of the data mining techniques. In addition, various rules were derived to determine the beneficiary companies of the government's support project using the analysis results expressed as decision trees. Three policy measures were presented based on the important rules that repeatedly appear in different predictive models to increase the effect of the government's industrial development. Using the analysis methods presented in this study and the determinants of the beneficiary companies of the government support project will help create a sustainable future defense industry growth environment.
The percentage of 3PL (Third-party Logistics), which uses third party businesses to outsource elements of the company's distribution and fulfillment services, is increasing steadily. To provide 3PL service to the customers, it is needed to estimate the total transportation cost and propose the unit cost to the customers. In this paper, we develop a decision support system for estimation of transportation cost of 3PL provider considering various transportation services, such as direct transportation, multi point visiting transportation, and cross docking. The system supports route planning of vehicles by using algorithms based on tabu search and dynamic programming.
In order to develop VirtuAlmighty system, CPDM (construction project data management) and CPLM (construction project lifecycle management) model must be settled beforehand. Because most of information systems based on 3D-Design have its own database and business process. So, our team will develop collaboration management architecture of construction process for Decision Support based on PLM (Project Life-cycle Management). This architecture with business processes and Database can be used in process develop, process monitoring with many stakeholders of project, process change management, and so on.
Despite their tilde application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today due to a static view far prefect progression. This study proposes a framework for estimation by learning based on a Linear Bayesian approach. As a project progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g. the expected project completion time as well as the probabilities of completing the project within talc due date and by a certain date. By Implementing such customized systems, project manager can be aware of changing project status more effectively and better revise resource allocation plans.
Despite their wide application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today, due to a static view for project progression. This study proposes a framework for estimation by loaming based on a Linear Bayesian approach. As a project Progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g., the expected project completion time as well as the probabilities of completing the project within the due bate and by a certain date. By implementing such customized system, project manager can be aware of changing project status more effectively and better revise resource allocation plans.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권1호
/
pp.27-35
/
2016
Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.
The purpose of this study was to describe nursing decision tasks, their characteristics, and problems associated with decision making. The subjects were 32 nurses who had at least one-year nursing experience and worked on medical-surgical units or intensive care units(ICU). They were asked to describe their decision making experiences in patient care situations and to identify the characteristics of each decisions. They were also asked to describe perceived problems associated with decision making in nursing. The responses on nursing decision tasks and problems were analyzed with content analysis and the decision characteristics were identified by statistical analysis of variance. It was found that there were 16 nursing decisions which are as follows : decisions related to interpreting and selecting appropriate strategies for pain management(6.6%) ; decisions related to providing emotional support (0.7%) ; decisions related to explaining the patient's condition and rationale for procedures(1.1%) ; decisions related to assisting patients to integrate the implications of illness and recovering into their lifestyles(2.9%) ; decisions related to detecting significant changes In patients and selecting appropriate intervention strategies (17.2%) ; decisions related to anticipating problems and selecting preventive measures(4.2%) ; decisions related to identifying emergency situations(0.4%) ; decisions related to effective management of patient crisis until physician assistance becomes available(2.8%) ; decisions related to starting and maintaining intravenous therapy(2.6%) ; decisions related to administering medications(8.1%) ; decisions related to combating the hazards of immobility(7.3%) : decisions related to treating wound management strategies(5.5%) ; decisions related to relieving patient discomfort(13.9) ; decisions related to selecting appropriate strategy according to the changing situation of the patient(18.2%) ; decisions related to selecting the best strategy for patient management(5.3%) ; and decisions related to coordinating, ordering, and meeting the various needs of the patient (3.1%). The nurses reported the fellowing problems in decision making : difficulties due to lack of knowledge and experience (18.6%) ; uncertainty and complexity of decision tasks(15.2%) ; lack of time to make decisions(2.9%) ; personal values which conflict with other staff(15.7%) ; lack of selection autonomy(30.0%) ; and organizational barriers(7.6%). Continuing education programs and decision support systems for frequent nursing decision tasks can be established on the basis of these results. Then decision ability in nurses will increase through the education programs and decision support systems, and then quality of nursing service will be better.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.