본 논문에서는 연산 중심의 DSP 작업에 대한 성능을 유지하면서 제어 작업을 효과적으로 수행할 수 있는 프로세서 구조를 제안하고 구현하였다. 전통적으로 DSP작업은 직렬 연결된 연산기로 구현되지만, 제안한 프로세서에서는 곱셈기, 2개의 ALU, 읽기/쓰기 유닛 등 4개의 실행 유닛이 병렬로 배치되어 있고 수퍼스칼라 방식으로 제어되므로 동시에 처리된다. 제안된 프로세서를 사용하여 AC-3 오디오 복호화기를 구현하여 성능이 37.8% 향상됨을 확인하였다. 이와 같은 연구는 기존의 고성능 DSP를 사용할 수 없는 저가격의 가전기기용 부품제작에 활용이 가능하다.
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.16-26
/
2024
Mobile edge computing (MEC) plays a crucial role in improving the performance of resource-constrained mobile devices by offloading computation-intensive tasks to nearby edge servers. However, existing methods often neglect the critical consideration of future task requirements when making offloading decisions. In this paper, we propose an innovative approach that addresses this limitation. Our method leverages recurrent neural networks (RNNs) to predict task sizes for future time slots. Incorporating this predictive capability enables more informed offloading decisions that account for upcoming computational demands. We employ genetic algorithms (GAs) to fine-tune fitness functions for current and future time slots to optimize offloading decisions. Our objective is twofold: minimizing total processing time and reducing energy consumption. By considering future task requirements, our approach achieves more efficient resource utilization. We validate our method using a real-world dataset from Google-cluster. Experimental results demonstrate that our proposed approach outperforms baseline methods, highlighting its effectiveness in MEC systems.
본 연구는 과제중심 모델을 재가노인을 위한 사례관리의 방법으로서 적용해보고 그 결과와 적용과정을 분석하며 효과성과 한계점을 조사한 것이다. 과제중심 모델은 3군데의 지역사회복지관에서 12명의 재가노인을 대상으로 실시하였으며 면접회수는 6회에서 10회까지였다. 12 사례에서 제시된 표적문제는 57개이며 표적문제를 해결하기 위하여 제시된 과제는 83개였다. 표적문제의 82.5%를 클라이언트들이 제시하였으며 과제제시는 약80%를 사회복지사들이 제시하였다. 그러나 과제수행에서는 37%를 클라이언트가 수행하도록 하였다. 문제의 변화는 평균 8.1로서 대부분의 문제들이 많이 좋아졌다고 평가되었다. 표적문제의 인식 자에 따른 문제 해결 정도는 내담자가 표적문제라고 인식하였을 때 가 사회복지사가 문제라고 인식한 경우보다 문제 해결이 더 많이 되었다. 이와 같은 결과를 보아 클라이언트가 인식한 문제를 표적문제로 하였을 때 문제해결이 훨씬 더 가능함을 알 수 있다. 과제 중심모델을 적용 과정을 분석한 결과에 의하면 모델의 적용을 통하며 재가 노인들의 요구를 파악하고 문제 해결에 대한 노인들의 적극적인 참여를 유도 할 수 있었으며 잠재된 능력을 발견하는 기회가 되기도 하였다. 재가노인을 위한 사례관리의 방법으로서 과제 중심 모델을 적용할 때 다음과 같은 것을 제안 할 수 있다. 첫째 처음 접수를 받는 클라이언트를 대상으로 적용하는 것이 효과적이며 둘째는 정기적인 슈퍼비젼을 통하며 진행을 점검하는 것이 중요하고 문제 해결을 위한 다양한 과제나 가능한 사회 자원에 대한 목록을 만드는 것이 필요하다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.4081-4098
/
2022
With the aim of tackling the contradiction between computation intensive industrial applications and resource-weak Edge Devices (EDs) in Industrial Internet of Things (IIoT), a novel computation task offloading scheme in SDIN-enabled MEC based IIoT is proposed in this paper. With the aim of reducing the task accomplished latency and energy consumption of EDs, a joint optimization method is proposed for optimizing the local CPU-cycle frequency, offloading decision, and wireless and computation resources allocation jointly. Based on the optimization, the task offloading problem is formulated into a Mixed Integer Nonlinear Programming (MINLP) problem which is a large-scale NP-hard problem. In order to solve this problem in an accessible time complexity, a sub-optimal algorithm GPCOA, which is based on hybrid evolutionary computation, is proposed. Outcomes of emulation revel that the proposed method outperforms other baseline methods, and the optimization result shows that the latency-related weight is efficient for reducing the task execution delay and improving the energy efficiency.
산업용 IoT는 대규모 연결을 통해 데이터 수집, 교환, 분석과 함께 산업 분야의 생산 효율성 개선에 중요한 요소이다. 그러나 최근 산업용 IoT의 확산으로 인해 트래픽이 폭발적으로 증가함에 따라 트래픽을 효율적으로 처리해줄 할당 기법이 필요하다. 본 논문에서는 산업용 IoT 환경에서 성공적인 태스크 처리율을 높이기 위한 2단계 태스크 오프로딩 결정 기법을 제안한다. 또한, 컴퓨팅 집약적인 태스크를 셀룰러 링크를 통해 이동 엣지 컴퓨팅(Mobile Edge Computing: MEC) 서버로 오프로드 하거나 D2D(Device to Device) 링크를 통해 근처의 산업용 IoT 장치로 오프로드 할 수 있는 하이브리드 오프로딩(Hybrid-offloading) 시스템을 고려한다. 먼저 1단계는 태스크 오프로딩에 참여하는 기기들이 이기적으로 행동하여 태스크 처리율 향상에 어려움을 주는 것을 방지하기 위해 인센티브 메커니즘을 설계한다. 메커니즘 디자인 중 McAfee's 메커니즘을 사용하여 태스크를 처리해주는 기기들의 이기적인 행동을 제어하고 전체 시스템 처리율을 높일 수 있도록 한다. 그 후 2단계에서는 산업용 IoT 장치의 불규칙한 움직임을 고려하여 비정상성(Non-stationary) 환경에서 멀티 암드 밴딧(Multi-Armed Bandit: MAB) 기반 태스크 오프로딩 결정 기법을 제안한다. 실험 결과로 제안된 기법이 기존의 다른 기법에 비해 전체 시스템 처리율, 통신 실패율, 후회 측면에서 더 나은 성능을 달성할 수 있음을 보인다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권2호
/
pp.383-403
/
2021
With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.
The purpose of this study was to describe nursing decision tasks, their characteristics, and problems associated with decision making. The subjects were 32 nurses who had at least one-year nursing experience and worked on medical-surgical units or intensive care units(ICU). They were asked to describe their decision making experiences in patient care situations and to identify the characteristics of each decisions. They were also asked to describe perceived problems associated with decision making in nursing. The responses on nursing decision tasks and problems were analyzed with content analysis and the decision characteristics were identified by statistical analysis of variance. It was found that there were 16 nursing decisions which are as follows : decisions related to interpreting and selecting appropriate strategies for pain management(6.6%) ; decisions related to providing emotional support (0.7%) ; decisions related to explaining the patient's condition and rationale for procedures(1.1%) ; decisions related to assisting patients to integrate the implications of illness and recovering into their lifestyles(2.9%) ; decisions related to detecting significant changes In patients and selecting appropriate intervention strategies (17.2%) ; decisions related to anticipating problems and selecting preventive measures(4.2%) ; decisions related to identifying emergency situations(0.4%) ; decisions related to effective management of patient crisis until physician assistance becomes available(2.8%) ; decisions related to starting and maintaining intravenous therapy(2.6%) ; decisions related to administering medications(8.1%) ; decisions related to combating the hazards of immobility(7.3%) : decisions related to treating wound management strategies(5.5%) ; decisions related to relieving patient discomfort(13.9) ; decisions related to selecting appropriate strategy according to the changing situation of the patient(18.2%) ; decisions related to selecting the best strategy for patient management(5.3%) ; and decisions related to coordinating, ordering, and meeting the various needs of the patient (3.1%). The nurses reported the fellowing problems in decision making : difficulties due to lack of knowledge and experience (18.6%) ; uncertainty and complexity of decision tasks(15.2%) ; lack of time to make decisions(2.9%) ; personal values which conflict with other staff(15.7%) ; lack of selection autonomy(30.0%) ; and organizational barriers(7.6%). Continuing education programs and decision support systems for frequent nursing decision tasks can be established on the basis of these results. Then decision ability in nurses will increase through the education programs and decision support systems, and then quality of nursing service will be better.
최근 무선 네트워크에서 발생하는 계산 집약적이고 지연시간에 민감한 태스크를 처리하기 위해 모바일 엣지 서비스에 대한 연구가 진행되고 있다. 하지만 지상에 고정되어 있는 MEC는 출퇴근 시간과 같이 태스크 처리 요청이 일시적으로 급증하는 상황에 대해 유연하게 대처할 수 없다. 이를 해결하기 위해 UAV(Unmanned Aerial Vehicle)를 추가로 이용해 모바일 엣지 서비스를 제공하는 기술이 등장하였다. UAV는 지상 MEC 서버와 달리 배터리 용량이 제한되어 있어 UAV MEC 서버 간 로드 밸런싱을 통해 에너지 효율성을 최적화 하는 것이 필요하다. 따라서 본 논문에서는 UAV의 에너지 상태와 차량의 이동성을 고려하며 유전 알고리즘 기반의 태스크 오프로딩과 Q-learning 기반의 태스크 마이그레이션을 통한 로드 밸런싱 기법을 제안한다. 제안 시스템의 성능을 평가하기 위해 차량 속도와 수에 따른 실험을 진행하고, 로드 분산, 에너지 사용량, 통신 오버헤드, 지연 시간 만족도 측면에서 성능을 분석하였다.
5G의 도래와 스마트 디바이스의 급격한 증가는 멀티 액세스 엣지 컴퓨팅(MEC)의 중요성을 부각시켰다. 이런 흐름 속에서, 특히 계산 집약적이고 지연시간에 민감한 애플리케이션의 효과적인 처리가 큰 관심을 받고 있다. 본 논문에서는 이러한 도전 과제를 해결하기 위해 확률적인 MEC 환경을 고려한 새로운 태스크 오프로딩 전략을 연구한다. 먼저 동적인 태스크 요청 빈도와 불안정한 무선 채널 상태를 감안하여 차량의 전력 소모와 지연시간을 최소화하는 방안을 제시한다. 그리고 심층 강화학습(DRL) 기반의 오프로딩 기법을 중심으로 연구를 진행하였고, 로컬 연산 및 오프로딩 전송 전력 사이의 최적의 균형을 찾기 위한 방법을 제안한다. Deep Deterministic Policy Gradient (DDPG)와 Deep Q-Network (DQN) 기법을 활용하여 차량의 전력 사용량과 큐잉 지연시간을 분석하였다. 이를 통해 차량 기반의 MEC 환경에서의 최적의 성능 향상 전략을 도출 및 검증하였다.
토공사는 타공종에 비하여 건설공사에서 차지하는 비용 및 공사기간의 비중이 높다. 이에 따라 토공사는 건설공사의 생산성에 높은 영향을 미치게 되는데, 종래의 토공사 시스템에서는 숙련된 굴삭조종자의 휴리스틱스에 의한 토공사 계획 및 토공작업을 수행하는 노동집약적 프로세스를 고수하고 있어 생산성을 높이기 힘든 상황이다. 이러한 당면과제를 극복하고자 본 논문에서는 BIM 기반의 지능형 굴삭시스템을 소개하며 굴삭 작업 계획 생성 시스템, 원격조종 및 자율 굴삭 작업에 필수적인 Human-Machine Interface(HMI), 웹기반 Project Management Information System(PMIS)이 개발되는 과정에서 적용된 BIM 요소기술에 대하여 검토하고, 적용된 결과를 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.